Quantitative analysis of follistatin (FST) promoter methylation in peripheral blood of patients with polycystic ovary syndrome.

Reprod Biomed Online

State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.

Published: February 2013

Epigenetic mechanisms may contribute to polycystic ovary syndrome (PCOS). To date, however, no studies have associated CpG methylation levels of any candidate gene with PCOS susceptibility. Follistatin (FST), an activin-binding protein, is expressed in numerous tissues and is shown to have linkage with PCOS. However, results from case-control association analyses between this gene and PCOS are inconsistent. Thus, this study investigated possible association of methylation levels in the promoter and 5'-untranscribed region (UTR) of the FST gene with PCOS incidence in peripheral blood leukocytes and endometrial tissue. Using mass array quantitative methylation analysis, first the 5'-UTR methylation in FST was analysed in 130 PCOS patients and 120 controls. The methylation level of the FST gene was further studied in endometrium from 24 controls and 24 PCOS patients. This study demonstrates that methylation levels of CpG sites in the FST promoter and 5'-UTR are not associated with PCOS. Nonetheless, this was the first study to quantitatively evaluate the methylation levels of a candidate gene in association with PCOS. Further studies should be performed to examine methylation in other candidate genes. Understanding the epigenetic mechanisms involved in PCOS may yield new insights into the pathophysiology of the disorder. Animal models demonstrate that epigenetic reprogramming may contribute to polycystic ovary syndrome (PCOS). To date, however, no studies have associated CpG methylation levels of any candidate gene with PCOS susceptibility. Follistatin (FST), an activin-binding protein, is expressed in numerous tissues and is a PCOS candidate gene. However, results from association analyses between this gene and PCOS are inconsistent. Thus, we investigated possible association of methylation levels in the promoter and 5'-UTR of the FST gene with PCOS incidence in peripheral blood leukocytes and endometrial tissue. Using mass array quantitative methylation analysis, we firstly analysed 5'-UTR methylation in 40 PCOS patients and 40 controls. We then validated results in a second sample consisting of 90 PCOS patients and 80 controls. The methylation level of the FST gene was further studied in endometrium from 24 controls and 24 PCOS patients. Finally, we quantitatively analysed FST expression in the endometrium using real-time PCR. Our study demonstrated that methylation levels of CpG sites in the FST promoter and 5'-UTR are not associated with PCOS. Nonetheless, as far as is known, this is the first study to quantitatively evaluate the methylation levels of a candidate gene in association with PCOS. Further studies should be performed to examine methylation in other candidate genes. Understanding the epigenetic mechanisms involved in PCOS may yield new insights into the pathophysiology of the disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rbmo.2012.10.011DOI Listing

Publication Analysis

Top Keywords

methylation levels
32
gene pcos
24
pcos
21
candidate gene
20
pcos patients
20
methylation
17
pcos studies
16
levels candidate
16
fst gene
16
follistatin fst
12

Similar Publications

Semaphorin-4D signaling in recruiting dental stem cells for vascular stabilization.

Stem Cell Res Ther

January 2025

Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR.

Background: Achieving a stable vasculature is crucial for tissue regeneration. Endothelial cells initiate vascular morphogenesis, followed by mural cells that stabilize new vessels. This study investigated the in vivo effects of Sema4D-Plexin-B1 signaling on stem cells from human exfoliated deciduous teeth (SHED)-supported angiogenesis, focusing on its mechanism in PDGF-BB secretion.

View Article and Find Full Text PDF

Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.

View Article and Find Full Text PDF

Background: The incidence of Parkinson's disease (PD) increases with age. Previous pharmacological studies have shown the potential of Huatan Jieyu Granules (HGs) for the treatment of PD, but the exact mechanisms remain unclear. This study aimed to explore the effects of herbal treatment on PD using mouse models and single-cell sequencing.

View Article and Find Full Text PDF

SMYD3 plays a pivotal role in mediating the epithelial-mesenchymal transition process in breast cancer.

Biochem Biophys Res Commun

January 2025

Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China. Electronic address:

In previous reports, we highlighted the significant involvement of SMYD3, a histone methyltransferase (HMT), in various aspects of cancer progression, including cell adhesion, migration, and invasion. In this study, we delved deeper into understanding the relationship between SMYD3 and epithelial-mesenchymal transition (EMT) both in cell lines and clinical samples. Our investigation uncovered a notable correlation between heightened SMYD3 expression and the presence of EMT markers in human breast cancer tissues.

View Article and Find Full Text PDF

Cardiotoxic effect of Doxorubicin (Dox) limits its clinical application. Previously, we reported that Dox induces phosphorylation of lamin A/C (pS22 lamin A/C), increased nuclear size, damage to the nuclear membrane, and cell death. However, the activation of signalling pathway during this event remains elusive, and it is unclear whether increased phospho-lamin A/C activates the cell death pathway in heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!