A series of potent arenavirus inhibitors sharing a benzimidazole core were previously reported by our group. SAR studies were expanded beyond the previous analysis, which involved the attached phenyl rings and methylamino linker portion, to include modifications focused on the benzimidazole core. These changes included the introduction of various substituents to the bicyclic benzimidazole ring system along with alternate core heterocycles. Many of the analogs containing alternate nitrogen-based bicyclic ring systems were found to retain antiviral potency compared to the benzimidazole series from which we derived our lead compound, ST-193. In fact, 21 h, built on an imidazopyridine core, possessed a near tenfold increase in potency against Lassa virus pseudotypes compared to ST-193. As found with the benzimidazole series, broad-spectrum arenavirus activity was also observed for a number of the analogs discovered during this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2012.11.093 | DOI Listing |
Nat Commun
December 2024
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses.
View Article and Find Full Text PDFSci Transl Med
November 2024
Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
Nat Commun
October 2024
Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
Viruses
August 2024
Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
The mammarenavirus matrix Z protein plays critical roles in virus assembly and cell egress. Meanwhile, heterotrimer complexes of a stable signal peptide (SSP) together with glycoprotein subunits GP1 and GP2, generated via co-and post-translational processing of the surface glycoprotein precursor GPC, form the spikes that decorate the virion surface and mediate virus cell entry via receptor-mediated endocytosis. The Z protein and the SSP undergo N-terminal myristoylation by host cell N-myristoyltransferases (NMT1 and NMT2), and G2A mutations that prevent myristoylation of Z or SSP have been shown to affect the Z-mediated virus budding and GP2-mediated fusion activity that is required to complete the virus cell entry process.
View Article and Find Full Text PDFJ Med Virol
November 2023
Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
The emerging viruses SARS-CoV-2 and arenaviruses cause severe respiratory and hemorrhagic diseases, respectively. The production of infectious particles of both viruses and virus spread in tissues requires cleavage of surface glycoproteins (GPs) by host proprotein convertases (PCs). SARS-CoV-2 and arenaviruses rely on GP cleavage by PCs furin and subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P), respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!