High-level production of thermotolerant β-xylosidase of Aspergillus sp. BCC125 in Pichia pastoris: characterization and its application in ethanol production.

Bioresour Technol

Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand.

Published: March 2013

A gene coding for thermotolerant β-xylosidase from Aspergillus sp. BCC125 was characterized. The recombinant enzyme was expressed in methylotrophic yeast Pichia pastoris KM71 and especially high yield of secreted enzyme was obtained. β-xylosidase possessed high enzyme efficiency (Kcat/Km=198.8mM(-1)s(-1)) toward pNP-β-D-xylopyranoside (pNPβX) with optimal temperature and pH for activity of 60°C and pH 4.0-5.0, respectively. The identified β-xylosidase showed clear synergism with previously identified xylanase for hydrolysis of xylan in vitro as well as simultaneous saccharification and fermentation process (SSF) in vivo with Pichia stipitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2012.11.117DOI Listing

Publication Analysis

Top Keywords

thermotolerant β-xylosidase
8
β-xylosidase aspergillus
8
aspergillus bcc125
8
pichia pastoris
8
high-level production
4
production thermotolerant
4
β-xylosidase
4
bcc125 pichia
4
pastoris characterization
4
characterization application
4

Similar Publications

Cooperative condensation of RNA-DIRECTED DNA METHYLATION 16 splicing isoforms enhances heat tolerance in Arabidopsis.

Nat Commun

January 2025

The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China.

Dissecting the mechanisms underlying heat tolerance is important for understanding how plants acclimate to heat stress. Here, we identify a heat-responsive gene in Arabidopsis thaliana, RNA-DIRECTED DNA METHYLATION 16 (RDM16), which encodes a pre-mRNA splicing factor. Knockout mutants of RDM16 are hypersensitive to heat stress, which is associated with impaired splicing of the mRNAs of 18 out of 20 HEAT SHOCK TRANSCRIPTION FACTOR (HSF) genes.

View Article and Find Full Text PDF

The study of heat tolerance in Drosophila melanogaster has been of particular interest to researchers for decades, with a common approach to assessing heat tolerance being to monitor the time to knockdown (TKD) after exposure to an elevated temperature. Classically, flies are housed in individual vials and placed inside a heated water bath. TKD is then monitored manually by researchers.

View Article and Find Full Text PDF

Thermotolerance screening of genotypes using seed germination assay.

Heliyon

December 2024

Department of Plant and Soil Sciences, 117 Dorman Hall, Box 9555, Mississippi State University, Mississippi State, MS, 39762, USA.

Temperature is a fundamental factor influencing the processes of seed germination. Investigating the response of carinata to thermal stress and establishing a dependable and efficient method for screening thermotolerance will enhance breeding programs and model applications. We assessed the response of 12 carinata genotypes to a range of eight temperatures, spanning from 8 to 37 °C, throughout the germination process.

View Article and Find Full Text PDF

Wheat, a major cereal crop, is the most consumed staple food after rice in India. Frequent episodes of heat waves during the past decade have raised concerns about food security under impending global warming and necessitate the development of heat-tolerant wheat cultivars. Wild relatives of crop plants serve as untapped reservoirs of novel genetic variations.

View Article and Find Full Text PDF

Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!