Here, we describe the development of a platinum redox sensor for the direct potentiometric quantification of starch in solution. The sensor measures the decrease in free triiodide ion after it complexes with starch to form a starch-triiodide complex. This decrease was, therefore, correlated with starch concentration, and the composition and stability of the potassium triiodide solution were optimised. The starch-triiodide complex was characterized potentiometrically at variable starch and triiodide concentrations. We also propose a response mechanism for the platinum redox sensor towards starch and an appropriate theoretical model. The optimised method exhibited satisfactory accuracy and precision and was in good agreement with a standard spectrophotometric method. The sensor was tested over a range of 0.4-9 mg starch, with recoveries ranging from 97.8% to 103.4% and a detection limit of 0.01 mg starch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2012.10.044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!