Large expansions of a non-coding GGGGCC-repeat in the first intron of the C9orf72 gene are a common cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). G-rich sequences have a propensity for forming highly stable quadruplex structures in both RNA and DNA termed G-quadruplexes. G-quadruplexes have been shown to be involved in a range of processes including telomere stability and RNA transcription, splicing, translation and transport. Here we show using NMR and CD spectroscopy that the C9orf72 hexanucleotide expansion can form a stable G-quadruplex, which has profound implications for disease mechanism in ALS and FTD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527825PMC
http://dx.doi.org/10.1038/srep01016DOI Listing

Publication Analysis

Top Keywords

c9orf72 hexanucleotide
8
amyotrophic lateral
8
lateral sclerosis
8
frontotemporal dementia
8
hexanucleotide repeat
4
repeat associated
4
associated amyotrophic
4
sclerosis frontotemporal
4
dementia forms
4
forms rna
4

Similar Publications

Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal degenerative disease of motor neurons, presenting with relentlessly progressive muscle atrophy and weakness. More than fifty genes carrying causative or disease-modifying variants have been identified since the 1990s, when the first ALS-associated variant in the gene SOD1 was discovered. The most commonly mutated ALS genes in the European populations include the C9orf72, SOD1, TARDBP and FUS.

View Article and Find Full Text PDF

The GC hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 GC hexanucleotide repeats.

View Article and Find Full Text PDF

The G C hexanucleotide repeat expansion in is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G C hexanucleotide repeats.

View Article and Find Full Text PDF

Background: The gene C9orf72 harbors a non-coding hexanucleotide repeat expansion known to cause amyotrophic lateral sclerosis and frontotemporal dementia. While previous studies have estimated the length of this repeat expansion in multiple tissues, technological limitations have impeded researchers from exploring additional features, such as methylation levels.

Methods: We aimed to characterize C9orf72 repeat expansions using a targeted, amplification-free long-read sequencing method.

View Article and Find Full Text PDF

A GGGGCC hexanucleotide repeat expansion (HRE) within the C9orf72 gene is a major causative factor in amyotrophic lateral sclerosis (ALS). This aberrant HRE results in the generation of five distinct dipeptide repeat proteins (DPRs). Among the DPRs, poly-PR accumulates in the nucleus and exhibits particularly strong toxicity to motor and cortical neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!