Tooth enamel has the highest degree of biomineralization of all vertebrate hard tissues. During the secretory stage of enamel formation, ameloblasts deposit an extracellular matrix that is in direct contact with the ameloblast plasma membrane. Although it is known that integrins mediate cell-matrix adhesion and regulate cell signaling in most cell types, the receptors that regulate ameloblast adhesion and matrix production are not well characterized. We hypothesized that αvβ6 integrin is expressed in ameloblasts where it regulates biomineralization of enamel. Human and mouse ameloblasts were found to express both β6 integrin mRNA and protein. The maxillary incisors of Itgb6(-/-) mice lacked yellow pigment and their mandibular incisors appeared chalky and rounded. Molars of Itgb6(-/-) mice showed signs of reduced mineralization and severe attrition. The mineral-to-protein ratio in the incisors was significantly reduced in Itgb6(-/-) enamel, mimicking hypomineralized amelogenesis imperfecta. Interestingly, amelogenin-rich extracellular matrix abnormally accumulated between the ameloblast layer of Itgb6(-/-) mouse incisors and the forming enamel surface, and also between ameloblasts. This accumulation was related to increased synthesis of amelogenin, rather than to reduced removal of the matrix proteins. This was confirmed in cultured ameloblast-like cells, in which αvβ6 integrin was not an endocytosis receptor for amelogenins, although it participated in cell adhesion on this matrix indirectly via endogenously produced matrix proteins. In summary, integrin αvβ6 is expressed by ameloblasts and it plays a crucial role in regulating amelogenin deposition and/or turnover and subsequent enamel biomineralization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.112599 | DOI Listing |
Blood
January 2025
Medical University of Vienna, Vienna, Austria.
In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.
View Article and Find Full Text PDFTissue Eng Part C Methods
January 2025
CiRA Foundation, Research and Development Center, Osaka, Japan.
Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Depeartment of Chemical and Biological Engineering, Colorado School of Mines; Quantitative Biosciences and Engineering, Colorado School of Mines;
Platelets are blood cells that play an integral role in hemostasis and the innate immune response. Platelet hyper- and hypoactivity have been implicated in metabolic disorders, increasing risk for both thrombosis and bleeding. Platelet activation and metabolism are tightly linked, with the numerous methods to measure the former but relatively few for the latter.
View Article and Find Full Text PDFJ Orthop Translat
January 2025
Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Background: Bone marrow inflammaging is a low-grade chronic inflammation that induces bone marrow aging. Multiple age-related and inflammatory diseases involve bone marrow inflammaging. Whether common pathological pathways exist in bone marrow inflammaging remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!