Inert gases diffuse into tissues in proportion to ambient pressure, and when pressure is reduced, gas efflux forms bubbles due to the presence of gas cavitation nuclei that are predicted based on theory but have never been characterized. Decompression stress triggers elevations in number and diameter of circulating annexin V-coated microparticles (MPs) derived from vascular cells. Here we show that ∼10% MPs from wild-type (WT) but not inflammatory nitric oxide synthase-2 (iNOS) knockout (KO) mice increase in size when exposed to elevated air pressure ex vivo. This response is abrogated by a preceding exposure to hydrostatic pressure, demonstrating the presence of a preformed gas phase. These MPs have lower density than most particles, 10-fold enrichment in iNOS, and generate commensurately more reactive nitrogen species (RNS). Surprisingly, RNS only slowly diffuse from within MPs unless particles are subjected to osmotic stress or membrane cholesterol is removed. WT mice treated with iNOS inhibitor and KO mice exhibit less decompression-induced neutrophil activation and vascular leak. Contrary to injecting naïve mice with MPs from wild-type decompressed mice, injecting KO MPs triggers fewer proinflammatory events. We conclude that nitrogen dioxide is a nascent gas nucleation site synthesized in some MPs and is responsible for initiating postdecompression inflammatory injuries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.01386.2012 | DOI Listing |
Inorg Chem
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714 China.
Photocatalytic reduction of nitrate to N holds great significance for environmental governance. However, the selectivity of nitrate reduction to N is influenced by sacrificial agents and the kinds of cocatalysts (such as Pt and Ag). The presence of unconsumed sacrificial agents can aggravate environmental pollution, while noble metal-based cocatalysts increase application costs.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Sem Sælands vei 4, NO-7491 Trondheim, Norway.
The Ostwald process is one of the commercial pathways for the production of nitric acid (HNO), a key component in the production of nitrate fertilizers. The Ostwald process is a mature, extensively studied, and highly optimized process, and there is still room for further intensification. The process can be further intensified by catalyzing the homogeneous oxidation of nitric oxide to nitrogen dioxide.
View Article and Find Full Text PDFGenet Epidemiol
January 2025
Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.
Gene-environment interactions have been observed for childhood asthma, however few have been assessed in ethnically diverse populations. Thus, we examined how polygenic risk score (PRS) modifies the association between ambient air pollution exposure (nitrogen dioxide [NO], ozone, particulate matter < 2.5 and < 10 μm) and childhood asthma incidence in a diverse cohort.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Epidemiology, NUTRIM School for Translational Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands. Electronic address:
Prenatal exposure to air pollution has been linked to lower birth weight, yet the role of the placenta in this association is often overlooked. This study investigates whether placental characteristics act as moderators or mediators in the association between prenatal exposure to particulate matter (PM) and nitrogen dioxide (NO) and birth weight in twins. The study included 3340 twins (born 2002-2013) from the East Flanders Prospective Twin Survey.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA. Electronic address:
PNPLA3-I148M genotype is the strongest predictive single-nucleotide polymorphism for liver fat. We examine whether PNPLA3-I148M modifies associations between oxidative gaseous air pollutant exposure (O) with i) liver fat and ii) multi-omics profiles of miRNAs and metabolites linked to liver fat. Participants were 69 young adults (17-22 years) from the Meta-AIR cohort.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!