Active downward propulsion by oyster larvae in turbulence.

J Exp Biol

Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA.

Published: April 2013

Oyster larvae (Crassostrea virginica) could enhance their settlement success by moving toward the seafloor in the strong turbulence associated with coastal habitats. We characterized the behavior of individual oyster larvae in grid-generated turbulence by measuring larval velocities and flow velocities simultaneously using infrared particle image velocimetry. We estimated larval behavioral velocities and propulsive forces as functions of the kinetic energy dissipation rate ε, strain rate γ, vorticity ξ and acceleration α. In calm water most larvae had near-zero vertical velocities despite propelling themselves upward (swimming). In stronger turbulence all larvae used more propulsive force, but relative to the larval axis, larvae propelled themselves downward (diving) instead of upward more frequently and more forcefully. Vertical velocity magnitudes of both swimmers and divers increased with turbulence, but the swimming velocity leveled off as larvae were rotated away from their stable, velum-up orientation in strong turbulence. Diving speeds rose steadily with turbulence intensity to several times the terminal fall velocity in still water. Rapid dives may require a switch from ciliary swimming to another propulsive mode such as flapping the velum, which would become energetically efficient at the intermediate Reynolds numbers attained by larvae in strong turbulence. We expected larvae to respond to spatial or temporal velocity gradients, but although the diving frequency changed abruptly at a threshold acceleration, the variation in propulsive force and behavioral velocity was best explained by the dissipation rate. Downward propulsion could enhance oyster larval settlement by raising the probability of larval contact with oyster reef patches.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.079855DOI Listing

Publication Analysis

Top Keywords

oyster larvae
12
strong turbulence
12
larvae
9
downward propulsion
8
turbulence
8
dissipation rate
8
propulsive force
8
oyster
5
larval
5
velocity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!