MicroRNAs (miRs) are small, non-coding RNAs that regulate gene expression and contribute to cell proliferation, differentiation and metabolism. Our previous study revealed the extensive modulation of a set of miRs in malignant glioma. In that study, miR microarray analysis demonstrated the upregulation of microRNA-183 (miR-183) in glioblastomas. Therefore, we examined the expression levels of miR-183 in various types of gliomas and the association of miR-183 with isocitrate dehydrogenase 2 (IDH2), which has complementary sequences to miR-183 in its 3'-untranslated region (3'UTR). In present study, we used real-time PCR analysis to demonstrate that miR-183 is upregulated in the majority of high-grade gliomas and glioma cell lines compared with peripheral, non-tumorous brain tissue. The mRNA and protein expression levels of IDH2 are downregulated via the overexpression of miR-183 mimic RNA in glioma cells. Additionally, IDH2 mRNA expression is upregulated in glioma cells expressing anti-miR-183. We verified that miR-183 directly affects IDH2 mRNA levels in glioma cells using luciferase assays. In malignant glioma specimens, the expression levels of IDH2 were lower in tumors than in the peripheral, non-tumorous brain tissues. HIF-1α levels were upregulated in glioma cells following transfection with miR-183 mimic RNA or IDH2 siRNA. Moreover, vascular endothelial growth factor and glucose transporter 1, which are downstream molecules of HIF-1α, were upregulated in cells transfected with miR-183 mimic RNA. These results suggest that miR-183 upregulation in malignant gliomas induces HIF-1α expression by targeting IDH2 and may play a role in glioma biology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-012-1027-9DOI Listing

Publication Analysis

Top Keywords

glioma cells
20
expression levels
12
mir-183 mimic
12
mimic rna
12
mir-183
10
glioma
9
isocitrate dehydrogenase
8
idh2
8
dehydrogenase idh2
8
malignant glioma
8

Similar Publications

Gene Therapy for Glioblastoma Multiforme.

Viruses

January 2025

Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.

Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.

View Article and Find Full Text PDF

The two obstacles for treating glioma are the skull and the blood brain-barrier (BBB), the first of which forms a physical shield that increases the difficulties of traditional surgery or radiotherapy, while the latter prevents antitumor drugs reaching tumor sites. To conquer these issues, we take advantage of the high penetrating ability of sonodynamic therapy (SDT), combined with a novel nanocomplex that can easily pass the BBB. Through ultrasonic polymerization, the amphiphilic peptides (CGRRGDS) were self-assembled as a spherical shell encapsulating a sonosensitizer Rose Bengal (RB) and a plant-derived compound, sulforaphane (SFN), to form the nanocomplex SFN@RB@SPM.

View Article and Find Full Text PDF

Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown.

View Article and Find Full Text PDF

: Cerebral intra-arterial chemotherapy (CIAC) has been demonstrated to achieve tumoricidal concentrations in cerebral tumour cells that are otherwise unachievable due to the presence of the blood-brain barrier. In this study, we sought to analyze the safety of CIAC in a cohort of patients treated at the Centre intégré universitaire de santé et de services sociaux de l'Estrie-Centre hospitalier universitaire de Sherbrooke (CIUSSS-CHUS). : Treatments consisted of monthly CIAC.

View Article and Find Full Text PDF

Human serum albumin (HSA) plays a fundamental role in the human body, including the transport of exogenous and endogenous substances. HSA is also a biopolymer with a great medical and pharmaceutical potential. Due to nontoxicity and biocompatibility, this protein can be used as a nanocarrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!