MicroRNAs (miRs) are small, non-coding RNAs that regulate gene expression and contribute to cell proliferation, differentiation and metabolism. Our previous study revealed the extensive modulation of a set of miRs in malignant glioma. In that study, miR microarray analysis demonstrated the upregulation of microRNA-183 (miR-183) in glioblastomas. Therefore, we examined the expression levels of miR-183 in various types of gliomas and the association of miR-183 with isocitrate dehydrogenase 2 (IDH2), which has complementary sequences to miR-183 in its 3'-untranslated region (3'UTR). In present study, we used real-time PCR analysis to demonstrate that miR-183 is upregulated in the majority of high-grade gliomas and glioma cell lines compared with peripheral, non-tumorous brain tissue. The mRNA and protein expression levels of IDH2 are downregulated via the overexpression of miR-183 mimic RNA in glioma cells. Additionally, IDH2 mRNA expression is upregulated in glioma cells expressing anti-miR-183. We verified that miR-183 directly affects IDH2 mRNA levels in glioma cells using luciferase assays. In malignant glioma specimens, the expression levels of IDH2 were lower in tumors than in the peripheral, non-tumorous brain tissues. HIF-1α levels were upregulated in glioma cells following transfection with miR-183 mimic RNA or IDH2 siRNA. Moreover, vascular endothelial growth factor and glucose transporter 1, which are downstream molecules of HIF-1α, were upregulated in cells transfected with miR-183 mimic RNA. These results suggest that miR-183 upregulation in malignant gliomas induces HIF-1α expression by targeting IDH2 and may play a role in glioma biology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-012-1027-9DOI Listing

Publication Analysis

Top Keywords

glioma cells
20
expression levels
12
mir-183 mimic
12
mimic rna
12
mir-183
10
glioma
9
isocitrate dehydrogenase
8
idh2
8
dehydrogenase idh2
8
malignant glioma
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!