Integrating graphene into device architectures requires interfacing graphene with dielectric materials. However, the dewetting and thermal instability of dielectric layers on top of graphene makes fabricating continuous graphene/dielectric interfaces challenging. Here, we show that yttria (Y(2)O(3))--a high-κ dielectric--can form a complete monolayer on platinum-supported graphene. The monolayer interacts weakly with graphene, but is stable to high temperatures. Scanning tunnelling microscopy reveals that the yttria layer exhibits a two-dimensional hexagonal lattice rotated by 30° relative to the hexagonal graphene lattice. X-ray photoemission spectroscopy measurements indicate a shift of the Fermi level in graphene on yttria deposition, which suggests that dielectric layers could be used for charge doping of metal-supported graphene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nnano.2012.217 | DOI Listing |
Sci Rep
January 2025
Preparatory Institute for Engineering Studies of Kairouan, (I.P.E.I.K) University of Kairouan, Kairouan, Tunisia.
We present a comprehensive analysis of the optical attributes of graphene sheets with charge carriers residing on a curved substrate. In particular, we focus on the fascinating case of Beltrami geometry and provide an explicit parametrization for this curved two-dimensional surface. By employing the massless Dirac description that is characteristic of graphene, we investigate the impact of the curved geometry on the optical properties within the sample.
View Article and Find Full Text PDFJ Control Release
January 2025
Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, Università degli Studi di Milano-Bicocca, Italy. Electronic address:
Graphene oxide (GO) is an amphiphilic and versatile graphene-based nanomaterial that is extremely promising for targeted drug delivery, which aims to administer drugs in a spatially and temporally controlled manner. A typical GO nanocarrier features a polyethylene glycol coating and conjugation to an active targeting ligand. However, it is challenging to accurately model GO dots, because of their intrinsically complex and not unique structure.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil and Environmental Engineering, Institute of Science Tokyo, 2-12-1, Meguro- Ku, Tokyo, 152-8552, Japan. Electronic address:
Intimately coupled photocatalytic biodegradation (ICPB) has been recently developed as an efficient wastewater treatment technique, particularly for removing persistent organic pollutants. However, photocatalyst/biofilm interaction in terms of photoelectron transfer and its effect on the overall performance of ICPB has not been explored. To investigate these points, interface-engineered composites of bismuth vanadate and reduced graphene oxide with low degree (BiVO/rGO-LC) and high degree of their contact (BiVO/rGO-HC) were fabricated and applied for ICPB.
View Article and Find Full Text PDFFood Chem
January 2025
School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China. Electronic address:
Ultra-precision point-of-care detection of Escherichia coli O157:H7 in foods is an important issue. Here, the detection sensitivity was improved by a signal cascade amplification strategy synergised by exonuclease III assisted isothermal amplification and reverse magnetic strategy. The double-stranded DNA formed by the aptamer and the target DNA as a sensing switch, avoiding the complex process of specific nucleic acid extraction.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Institute of Zhejiang University - Quzhou, No. 99 Zheda Road, Quzhou 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. Electronic address:
The trichloroethylene production industry generates high-boiling-point solid residues during rectification, which contain high concentrations of chlorinated contaminants, particularly hexachlorobutadiene (HCBD). Traditionally, these distillation residues are managed through co-incineration or landfilling, leading to environmental and economic challenges. In this study, we present a rapid and environmentally friendly electrothermal approach for both detoxifying and upcycling distillation residue into graphene-based electromagnetic wave (EMW) absorbing materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!