Laminin-111 is a large trimeric basement membrane glycoprotein with many active sites. In particular, four peptides active in tumor malignancy studies have been identified in laminin-111 using a systematic peptide screening method followed by various assays. Two of the peptides (IKVAV and AG73) are found on the α1 chain, one (YIGSR) of the β1 chain and one (C16) on the γ1 chain. The four peptides have distinct activities and receptors. Since three of the peptides (IKVAV, AG73 and C16) strongly promote tumor growth, this may explain the potent effects laminin-111 has on malignant cells. The peptide, YIGSR, decreases tumor growth and experimental metastasis via a 32/67 kD receptor while IKVAV increases tumor growth, angiogenesis and protease activity via integrin receptors. AG73 increases tumor growth and metastases via syndecan receptors. C16 increases tumor growth and angiogenesis via integrins. Identification of such sites on laminin-111 will have use in defining strategies to develop therapeutics for cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544779PMC
http://dx.doi.org/10.4161/cam.22827DOI Listing

Publication Analysis

Top Keywords

tumor growth
20
increases tumor
12
peptides ikvav
8
ikvav ag73
8
growth angiogenesis
8
tumor
6
growth
5
laminin-111-derived peptides
4
peptides cancer
4
laminin-111
4

Similar Publications

Synchronous Interference of Dual Metabolic Pathways Mediated by HS Gas/GOx for Augmenting Tumor Microwave Thermal Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways.

View Article and Find Full Text PDF

Purpose: Sarcopenia is an age-related disease that is related to nutritional intake and chronic low-grade inflammation. The aim of this study was to investigate the association of dietary intake, inflammatory markers and sarcopenia among the community-dwelling older adults.

Methods: A total of 1001 older adults aged 60 and above were recruited.

View Article and Find Full Text PDF

Cascade-Responsive Nanoparticles for Efficient CRISPR/Cas9-Based Glioblastoma Gene Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.

CRISPR/Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing technology represents great promise for treating glioblastoma (GBM) due to its potential to permanently eliminate tumor pathogenic genes. Unfortunately, delivering CRISPR to the GBM in a safe and effective manner is challenging. Herein, a glycosylated and cascade-responsive nanoparticle (GCNP) that can effectively cross the blood-brain barrier (BBB) and activate CRISPR/Cas9-based gene editing only in the GBM is designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!