Aridland ecosystems are predicted to be responsive to both increases and decreases in precipitation. In addition, chronic droughts may contribute to encroachment of native C3 shrubs into C4-dominated grasslands. We conducted a long-term rainfall manipulation experiment in native grassland, shrubland and the grass-shrub ecotone in the northern Chihuahuan Desert, USA. We evaluated the effects of 5 years of experimental drought and 4 years of water addition on plant community structure and dynamics. We assessed the effects of altered rainfall regimes on the abundance of dominant species as well as on species richness and subdominant grasses, forbs and shrubs. Nonmetric multidimensional scaling and MANOVA were used to quantify changes in species composition in response to chronic addition or reduction of rainfall. We found that drought consistently and strongly decreased cover of Bouteloua eriopoda, the dominant C4 grass in this system, whereas water addition slightly increased cover, with little variation between years. In contrast, neither chronic drought nor increased rainfall had consistent effects on the cover of Larrea tridentata, the dominant C3 shrub. Species richness declined in shrub-dominated vegetation in response to drought whereas richness increased or was unaffected by water addition or drought in mixed- and grass-dominated vegetation. Cover of subdominant shrubs, grasses and forbs changed significantly over time, primarily in response to interannual rainfall variability more so than to our experimental rainfall treatments. Nevertheless, drought and water addition shifted the species composition of plant communities in all three vegetation types. Overall, we found that B. eriopoda responded strongly to drought and less so to irrigation, whereas L. tridentata showed limited response to either treatment. The strong decline in grass cover and the resistance of shrub cover to rainfall reduction suggest that chronic drought may be a key factor promoting shrub dominance during encroachment into desert grassland.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-012-2552-0 | DOI Listing |
Plant Dis
January 2025
University of California Davis, Plant Pathology, 1 Shields Ave, Davis, California, United States, 95616;
While recycling irrigation water can reduce water use constraints and costs in nurseries, adoption is hindered by the associated risk of recirculating and spreading waterborne pathogens. To enable regional water re-use, this study assessed oomycete re-circulation risks and recycled water treatment efficacy at organismal and community scales. In culture-based analysis of recycled pond water at two Mid-Atlantic nurseries across three years, diverse oomycetes (12+ species) were detected using culture-based analysis, with Phytopythium helicoides as the dominant species; MiSeq analysis detected eight of these species, plus 24 additional taxa.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India.
Face masks are strongly believed to be the best precaution to reduce the transmission of the SARS-CoV-2 virus, which resulted in an unprecedented surge in the production and use of personal respiratory protective equipment. Unfortunately, this surge led to improper disposal of used masks. This study aimed to assess the occurrence of microplastics (MPs) in used and unused surgical and cloth masks and N95 respirators.
View Article and Find Full Text PDFTree Physiol
January 2025
Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
We employed machine learning (ML) techniques combined with potential-dependent photoelectrochemical impedance spectroscopy (pot-PEIS) to gain deeper insights into the charge transport mechanisms of hematite (α-FeO) photoanodes. By the Shapley Additive exPlanations (SHAP) analysis from the ML model constructed from a small data set (dozens of samples) of electrical parameters obtained from pot-PEIS and the PEC performance, we identified the dominant factors influencing the electron transport to the back contact in the bulk and hole transfer to a solution at the hematite/electrolyte interface. The results revealed that shallow defect states significantly enhance electron transport, while deep defect states impede it, and also one of the surface states enhances the hole transfer to the electrolyte solution.
View Article and Find Full Text PDFLangmuir
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!