Stem cells in the dental pulp comprise rare populations lacking definitive cytological markers and thus are poorly characterized in vivo, especially in rat species. To gain more insight into the phenotypical characteristics and tissue distribution of these cells, we examined the distribution of stem-cell-associated marker-expressing cells and mRNA expression levels of stem-cell-associated markers in the rat molar. CD146-positive cells co-expressing microtubule-associated protein 1B were counted following double-labeling immunoperoxidase staining and their density in the coronal pulp, root pulp and periodontal ligament was compared. Moreover, mRNA expression levels of CD146, CD105, CD166 and secreted phosphoprotein 1 (SPP1; also known as osteopontin, a negative regulatory element of the stem cell niche) were analyzed in these regions by using real time polymerase chain reaction. The double-positive cells could be clearly distinguished from non-stem cells single-stained by either of the markers and showed a significantly higher density in the coronal pulp compared with the other regions (P<0.05). Moreover, mRNA expression levels of CD146, CD105 and CD166 were significantly higher in the coronal pulp than in the other regions (P<0.05). On the other hand, SPP1 mRNA expression was significantly higher in the periodontal ligament than in the pulp. Thus, the density of stem-cell-associated marker-expressing cells and stem-cell-associated gene expression levels are higher in the coronal pulp than in the root pulp and periodontal ligament, suggesting that the coronal pulp harbors more stem cells than the other regions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-012-1539-9DOI Listing

Publication Analysis

Top Keywords

stem-cell-associated markers
8
markers rat
8
dental pulp
8
mrna expression
8
expression levels
8
density coronal
8
coronal pulp
8
cells
6
pulp
5
immunohistochemical gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!