We experimentally demonstrate the use of data-aided digital signal processing for format-flexible coherent reception of different 28-GBd PDM and 4D modulated signals in WDM transmission experiments over up to 7680 km SSMF by using the same resource-efficient digital signal processing algorithms for the equalization of all formats. Stable and regular performance in the nonlinear transmission regime is confirmed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.028786DOI Listing

Publication Analysis

Top Keywords

digital signal
12
signal processing
12
data-aided digital
8
experimental demonstration
4
demonstration format-flexible
4
format-flexible single-carrier
4
single-carrier coherent
4
coherent receiver
4
receiver data-aided
4
processing experimentally
4

Similar Publications

Background/purpose: Nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing protein 5 (NLRC5) plays a regulatory role in innate and adaptive immunity. However, its role in periodontitis remains unclear. This study investigated the effects of NLRC5 on periodontitis and the underlying mechanism.

View Article and Find Full Text PDF

: active learning in neutron reflectometry for fast data acquisition.

J Appl Crystallogr

January 2024

NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.

Neutron reflectometry (NR) is a powerful technique for interrogating the structure of thin films at interfaces. Because NR measurements are slow and instrument availability is limited, measurement efficiency is paramount. One approach to improving measurement efficiency is active learning (AL), in which the next measurement configurations are selected on the basis of information gained from the partial data collected so far.

View Article and Find Full Text PDF

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

A fault tolerant CSA in QCA technology for IoT devices.

Sci Rep

January 2025

Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.

According to recent research, with the ever-increasing use of Internet of Things (IoT) devices, there has arisen an ever-growing need for high-performance yet low-power circuits that can efficiently process information. Quantum-dot Cellular Automata (QCA) has emerged as a promising alternative to conventional complementary metal-oxide-semiconductor (CMOS) technology due to its great potential in digital design at nanoscale levels on account of very low power consumption and very high processing speed. However, QCA circuits are inherently prone to faults due to variations in manufacturing processes and due to the influence of environmental factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!