Increased sensitivity in fiber-based spectroscopy using carbon-coated fiber.

Opt Express

Dept. of Applied Physics, Royal Institute of Technology, Roslagstullsbacken 21, SE-106 91, Stockholm, Sweden.

Published: December 2012

Carbon-coated optical fibers are used here for reducing the luminescence background created by the primary-coating and thus increase the sensitivity of fiber-based spectroscopy systems. The 2-3 orders of magnitude signal-to-noise ratio improvement with standard telecom fibers is sufficient to allow for their use as Raman probes in the identification of organic solvents.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.028049DOI Listing

Publication Analysis

Top Keywords

sensitivity fiber-based
8
fiber-based spectroscopy
8
increased sensitivity
4
spectroscopy carbon-coated
4
carbon-coated fiber
4
fiber carbon-coated
4
carbon-coated optical
4
optical fibers
4
fibers reducing
4
reducing luminescence
4

Similar Publications

Advancements in plasmonic sensing require simultaneous detection capability that ensures large-scale detection with reduced losses. In this work, we propose a new solid-core fiber-based refractive index (RI) sensor with an ultra-broad detection range. The proposed fiber consists of a relatively simple single-ring cladding with six circular tubes in which the light is guided in the core based on the inhibited-coupling (IC) mechanism.

View Article and Find Full Text PDF

pH is an important physiological parameter within organisms, playing a crucial role in functional activities in cells and tissues. Among various pH sensing methods, optical fiber pH sensors have gained a wide attention due to their unique advantages. However, current silica optical fiber-based pH sensors face some challenges such as weak biocompatibility, low biological safety, complex or unstable surface modification.

View Article and Find Full Text PDF

A high-sensitivity hot-wire anemometer is proposed for use with a cobalt-doped fiber (CDF) based long-period grating (LPG) heated optically by a 1480 nm laser. The CDF-LPG absorbs laser power and generates heat inherently, thereby eliminating the need for both metal coating and mode coupling devices that are usually required in optical fiber grating anemometers. The dip wavelength of the CDF-LPG shifts with airflow velocity due to the cooling effect of the airflow.

View Article and Find Full Text PDF

Hollow-core optical fiber (HCF) gas cells are an attractive option for many applications including metrology and non-linear optics due to the enhanced gas-light interaction length in a compact and lightweight format. Here, we report the first demonstration and characterization of a selectively pressurized, hermetically sealed hollow-core fiber-based gas cell, where the core is filled with a higher gas pressure than the cladding to enhance the optical performance. This differential gas pressure creates a gas-induced differential refractive index (GDRI) that is shown to enable significant modification of the HCF's optical performance.

View Article and Find Full Text PDF

Polymer-Layered Optical Wearable (PLOW) for Healthcare Applications: Temperature and Stretching Monitoring.

ACS Appl Mater Interfaces

January 2025

Nanophotonics and Plasmonics Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India.

Thermal and stretching characteristics are crucial variables in healthcare, robotics, and human-machine interaction applications. Here, we present a single-mode fiber-based, balloon-shaped, single- and dual polymer-layered optical wearable (PLOW) system that can sense both temperature and stretching. These two types of PLOWs are compared in terms of their detection performance across all criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!