A photonic preprocessor for analog to digital conversion is demonstrated and characterized using a cavity-less optical pulse source. The pulse source generates high fidelity pulses at 2 GHz repetition rate with temporal width of 3 ps. Chirped pulses are formed by cascaded amplitude and phase modulators, and subsequently compressed in dispersion compensating fiber. Sampling operation is performed with a dual-output Mach-Zehnder modulator, where the complimentary output enables a reduction of noise by 3 dB. Phase noise characterization shows that the phase noise of the generated pulses is fully dictated by the RF source. The high quality of the pulse source used in a sampling preprocessor experiment was verified by measuring 8 effective number of bits at 10 GHz and 7.0 effective number of bits at 40 GHz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.00B419 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
Although MoSe-based photodetectors have achieved excellent performance, the ultrafast photoresponse has limited their application as an optoelectronic synapse. In this paper, the enhancement of the rhodamine 6G molecule on the memory time of MoSe is reported. It is found that the memory time of monolayer MoSe can be obviously enhanced after assembly with rhodamine 6G exhibiting synaptic characteristics in comparison to pristine MoSe.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
The standard polygraph, or lie detector, is limited by its reliance on average heart rate, subjective examiner interpretation, and the need for direct subject contact. Remote photoplethysmography (rPPG) offers a promising contactless alternative, by using facial videos to extract heart rate variability (HRV). We introduce "LieRHRV," a remote lie detection algorithm based solely on extracted HRV parameters.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
Hypothesis: Nanoscale characterisation of the self-associated species formed by amphiphilic pharmaceuticals in aqueous solution carries relevance across their entire journey from development through to manufacture - relevant, therefore, not only as regards formulation of the drug products as medicines, but also potentially relevant to their bioavailability, activity, and clinical side effects. Such knowledge and understanding, however, can only be fully secured by applying a range of experimental and theoretical methodologies.
Experiments: Herein, we apply a synergistic combination of solubility, surface tension, SANS, NMR and UV spectroscopic studies, together with MD simulation and QM calculations, to investigate the meso-structures of propranolol hydrochloride aggregates in bulk aqueous solutions, at concentrations spanning 2.
J Electromyogr Kinesiol
December 2024
School of Information Science and Technology, Dalian Maritime University, Linghai Road 1, Dalian, Liaoning Province 116026, China. Electronic address:
This study proposed a U-Net based partial convolutional time-domain model for a real-time high-density surface electromyography (HD-sEMG) decomposition. The model combines U-Net and a separation block containing partial convolution, aiming to efficiently identify motor units (MUs) without preprocessing. The proposed U-Net based network was trained by the HD-sEMG signals with innervation pulse trains (IPTs) labels, and the results are compared between different step sizes, noises, and model structures under the sliding time window with 120 sampling points.
View Article and Find Full Text PDFMar Drugs
November 2024
Department for Life Quality Studies, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy.
Marine microalgae are emerging as promising sources of polyphenols, renowned for their health-promoting benefits. Recovering polyphenols from microalgae requires suitable treatment and extraction techniques to ensure their release from the biomass and analytical methodologies to assess their efficiency. This review provides a comprehensive comparison of traditional and cutting-edge extraction and analytical procedures applied for polyphenolic characterization in marine microalgae over the past 26 years, with a unique perspective on optimizing their recovery and identification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!