Short-period multilayers containing ultrathin atomic layers of Al embedded in titanium dioxide (TiO(2)) film-here called single-pulse doped multilayers-are fabricated by atomic layer deposition (ALD) growth methods. The approach explored here is to use Al atoms through single-pulsed deposition to locally modify the chemical environment of TiO(2) films, establishing a chemical control over the resistive switching properties of metal/oxide/metal devices. We show that this simple methodology can be employed to produce well-defined and controlled electrical characteristics on oxide thin films without compound segregation. The increase in volume of the embedded Al(2)O(3) plays a crucial role in tuning the conductance of devices, as well as the switching bias. The stacking of these oxide compounds and their use in electrical devices is investigated with respect to possible crystalline phases and local compound formation via chemical recombination. It is shown that our method can be used to produce compounds that cannot be synthesized a priori by direct ALD growth procedures but are of interest due to specific properties such as thermal or chemical stability, electrical resistivity or electric field polarization possibilities. The monolayer doping discussed here impacts considerably on the broadening of the spectrum of performance and technological applications of ALD-based memristors, allowing for additional degrees of freedom in the engineering of oxide devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/24/3/035702 | DOI Listing |
Background: The lives of adolescents and young people living with HIV (LHIV) are dominated by complex psychological and social stressors. These may be more pronounced among those perinatally infected. This longitudinal mixed-methods study describes the clinical and psychosocial challenges faced by HIV perinatally infected young mothers in Harare, Zimbabwe to inform tailored support.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia.
This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical model allowed us to calculate the processes of oxygen ion transfer to the reaction zone; the growth of the nanostructure due to the oxidation of the titanium film; and the formation of TiO, TiO, and TiO oxides in the volume of the growing nanostructure and the redistribution of oxygen vacancies and conduction channel.
View Article and Find Full Text PDFOrg Lett
January 2025
College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
Capturing CO is highly valued in the field of organic synthesis, especially underdeveloped dual-CO conversion. In this study, we detail a novel reductive cyclization of 2-indolylanilines with dual CO as a difunctional reagent in the presence of PMHS [poly(methylhydrosiloxane)], delivering methyl-substituted quinoxalines. Furthermore, another chemoselective cyclization with 2-pyrrolylanilines is also realized by converting mono-CO.
View Article and Find Full Text PDFHeliyon
January 2025
National Institute of Materials Physics, 077125 Magurele, Ilfov, Romania.
Non-volatile electronic memory elements are very attractive for applications, not only for information storage but also in logic circuits, sensing devices and neuromorphic computing. Here, a ferroelectric film of guanine nucleobase is used in a resistive memory junction sandwiched between two different ferromagnetic films of Co and CoCr alloys. The magnetic films have an in-plane easy axis of magnetization and different coercive fields whereas the guanine film ensures a very long spin transport length, at 100 K.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Materials Science and Metallurgy, University of Cambridge, CB3 0FS, Cambridge, UK.
The discovery of ferroelectric phases in HfO-based films has reignited interest in ferroelectrics and their application in resistive switching (RS) devices. This study investigates the pivotal role of electrodes in facilitating the Schottky-to-Ohmic transition (SOT) observed in devices consisting of ultrathin epitaxial ferroelectric HfYO (YHO) films deposited on LaSrMnO-buffered Nb-doped SrTiO (NbSTO|LSMO) with Ti|Au top electrodes. These findings indicate combined filamentary RS and ferroelectric switching occurs in devices with designed electrodes, having an ON/OFF ratio of over 100 during about 10 cycles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!