Measuring dimethylallyl diphosphate available for isoprene synthesis.

Anal Biochem

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.

Published: April 2013

Dimethylallyl diphosphate (DMADP) is a central metabolite in isoprenoid metabolism, but it is difficult to measure. Three different methods for measuring DMADP are compared, and a new method based on the conversion of DMADP to isoprene using recombinant isoprene synthase is introduced. Mass spectrometry is reliable but does not distinguish between DMADP and isopentenyl diphosphate. Acid hydrolysis is reliable for measuring DMADP in bacterial extracts but overestimates DMADP in plant samples. To measure the DMADP in chloroplasts, light minus dark measurements are normally used. Chloroplast DMADP amounts measured using acid hydrolysis and a mass spectrometric method were comparable in this assay. Post-illumination isoprene emission tended to slightly overestimate chloroplast DMADP concentration. The DMADP pool size in bacteria is highly regulated, consistent with previous observations made with plants. DMADP is a very labile metabolite, but four methods described here allow measurements of samples from plants and bacteria. The use of recombinant isoprene synthase can greatly simplify the analysis. The various techniques tested here have advantages and disadvantages, and it is useful to have more than one method available when studying biological isoprene production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2012.11.031DOI Listing

Publication Analysis

Top Keywords

dmadp
11
dimethylallyl diphosphate
8
measuring dmadp
8
recombinant isoprene
8
isoprene synthase
8
acid hydrolysis
8
chloroplast dmadp
8
isoprene
6
measuring dimethylallyl
4
diphosphate isoprene
4

Similar Publications

Chemoenzymatic synthesis of non-natural terpenes using the promiscuous activity of terpene synthases allows for the expansion of the chemical space of terpenoids with potentially new bioactivities. In this report, we describe protocols for the preparation of a novel aphid attractant, (S)-14,15-dimethylgermacrene D, by exploiting the promiscuity of (S)-germacrene D synthase from Solidago canadensis and using an engineered biocatalytic route to convert prenols to terpenoids. The method uses a combination of five enzymes to carry out the preparation of terpenoid semiochemicals in two steps: (1) diphosphorylation of five or six carbon precursors (prenol, isoprenol and methyl-isoprenol) catalyzed by Plasmodium falciparum choline kinase and Methanocaldococcus jannaschii isopentenyl phosphate kinase to form DMADP, IDP and methyl-IDP, and (2) chain elongation and cyclization catalyzed by Geobacillus stearothermophilus (2E,6E)-farnesyl diphosphate synthase and S.

View Article and Find Full Text PDF

Unlabelled: Isoprenoids are a diverse family of compounds that are synthesized from two isomeric compounds, isopentenyl diphosphate and dimethylallyl diphosphate. In most bacteria, isoprenoids are produced from the essential methylerythritol phosphate (MEP) pathway. The terminal enzymes of the MEP pathway IspG and IspH are [4Fe-4S] cluster proteins, and in the substrates of IspG and IspH accumulate in cells in response to O, suggesting possible lability of their [4Fe-4S] clusters.

View Article and Find Full Text PDF

The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar ( × ) lines modified in their DXS activity. Single leaves were dynamically labeled with CO in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated.

View Article and Find Full Text PDF

Two natural compounds as potential inhibitors against the Helicobacter pylori and Acinetobacter baumannii IspD enzymes.

Int J Antimicrob Agents

May 2024

Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Marine College, Shandong University, Weihai, China. Electronic address:

In a vast majority of bacteria, protozoa and plants, the methylerythritol phosphate (MEP) pathway is utilized for the synthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), which are precursors for isoprenoids. Isoprenoids, such as cholesterol and coenzyme Q, play a variety of crucial roles in physiological activities, including cell-membrane formation, protein degradation, cell apoptosis, and transcription regulation. In contrast, humans employ the mevalonate (MVA) pathway for the production of IDP and DMADP, rendering proteins in the MEP pathway appealing targets for antimicrobial agents.

View Article and Find Full Text PDF

Isoprene is emitted by some plants and is the most abundant biogenic hydrocarbon entering the atmosphere. Multiple studies have elucidated protective roles of isoprene against several environmental stresses, including high temperature, excessive ozone, and herbivory attack. However, isoprene emission adversely affects atmospheric chemistry by contributing to ozone production and aerosol formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!