This work aims to improve the protein stability and catalytic efficiency of α-amylase from Bacillus subtilis under acidic conditions by site-directed mutagenesis. Based on the analysis of a three dimensional structure model, four basic histidine (His) residues His(222), His(275), His(293), and His(310) in the catalytic domain were selected as the mutation sites and were further replaced with acidic aspartic acid (Asp), respectively, yielding four mutants H222D, H275D, H293D, H310D. The mutant H222D was inactive. Double and triple mutations were further conducted and four mutants H275/293D, H275/310D, H293/310D, and H275/293/310D were obtained. The acidic stability of enzyme was significantly enhanced after mutation, and 45-92% of initial activity of mutants was retained after incubation at pH 4.5 and 25°C for 24h, while that for wild-type was only 39.5%. At pH 4.5, the specific activity of wild-type and mutants H275D, H293D, H310D, H275/293D, H275/310D, H293/310D, and H275/293/310D were 108.2, 131.8, 138.9, 196.6, 156.3, 204.6, and 216.2U/mg, respectively. The catalytic efficiency for each active mutant was much higher than that of wild-type at low pH. The kcat/Km values of the mutants H275D, H293D, H310D, H275/293D, H275/310D, H293/310D, and H275/293/310D at pH 4.5 were 3.3-, 4.3-, 6.5-, 4.5-, 11.0-, 14.5-, and 16.7-fold higher, respectively, than that of the wild-type. As revealed by the structure models of the wild-type and mutant enzymes, the hydrogen bonds and salt bridges were increased after mutation, and an obvious shift of the basic limb toward acidity was observed for mutants. These changes around the catalytic domain contributed to the significantly improved protein stability and catalytic efficiency at low pH. This work provides an effective strategy to improve the catalytic activity and stability of α-amylase under acidic conditions, and the results obtained here may be useful for the improvement of acid-resistant ability of other enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2012.12.007 | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
A prevalent challenge in particulate photocatalytic water splitting lies in the fact that while numerous photocatalysts exhibit outstanding hydrogen evolution reaction (HER) activity in organic sacrificial reagents, their performance diminishes markedly in a Z-scheme water splitting system using electronic mediators. This underlying reason remains undefined, posing a long-standing issue in photocatalytic water splitting. Herein, we unveiled that the primary reason for the decreased HER activity in electronic mediators is due to the strong adsorption of shuttle ions on cocatalyst surfaces, which inhibits the initial proton reduction and results in a severe backward reaction of the oxidized shuttle ions.
View Article and Find Full Text PDFInorg Chem
January 2025
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China.
The low sulfur selectivity of Fe-based HS-selective catalytic oxidation catalysts is still a problem, especially at a high O content. This is alleviated here through anchoring FeO nanoclusters on UiO-66 via the formation of Fe-O-Zr bonds. The introduced FeO species exist in the form of Fe and Fe.
View Article and Find Full Text PDFACS Nano
January 2025
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China.
Electrochemical nitrate reduction (NORR) to ammonia presents a promising alternative strategy to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction (HER) reduces the Faradaic efficiency toward ammonia, while the oxygen evolution reaction (OER) increases the energy consumption. This study designs IrCu alloy nanoparticles as a bifunctional catalyst to achieve efficient NORR and OER while suppressing the unwanted HER.
View Article and Find Full Text PDFLangmuir
January 2025
School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.
View Article and Find Full Text PDFChembiochem
January 2025
Jiangnan University, State Key Laboratory of Food Science and Technology, 1800 Lihu Road, Wuxi, China, 214122, Wuxi, CHINA.
Indigo is widely used in dyes, medicines and semiconductors materials due to its excellent dyeing efficiency, antibacterial, antiviral, anticancer, anti-corrosion, and thermostability properties. Here, a biosynthetic pathway for indigo was designed, integrating two enzymes (EcTnaA, MaFMO) into a higher L-tryptophan-producing the strain Escherichia coli TRP. However, the lower catalytic activity of MaFMO was a bottleneck for increasing indigo titers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!