The grasshoppers are ideal materials to study various meiotic stages of spermatogenesis due to their easy availability, fairly large chromosomes, and fewer numbers of chromosomes. It is easy to make temporary squash preparation of grasshopper testes; however, it is usually difficult for the beginners to differentiate between stages of meiosis. In view of this, we demonstrated the method of identification of meiotic stages by chromosome number and chromosome conformation, taking spermatogonial meiosis of Locusta migratoria manilensis as an example. We described briefly the mitosis of spermatogonia and the spermatogenesis of this species as well.

Download full-text PDF

Source
http://dx.doi.org/10.3724/sp.j.1005.2012.01628DOI Listing

Publication Analysis

Top Keywords

meiotic stages
8
[identification meiotic
4
meiotic events
4
events grasshopper
4
grasshopper spermatogenesis]
4
spermatogenesis] grasshoppers
4
grasshoppers ideal
4
ideal materials
4
materials study
4
study meiotic
4

Similar Publications

Female infertility is a significant healthcare burden that is frequently encountered among couples globally. While environmental factors, comorbidities, and lifestyle determine reproductive health, certain genetic variants in key reproductive genes can potentially cause unsuccessful pregnancies. Such crucial proteins have been identified within the subcortical maternal complex (SCMC) and play an integral role in the early stages of embryogenesis before embryo implantation.

View Article and Find Full Text PDF

Both 20S and 19S proteasome components are essential for meiosis in male mice.

Zool Res

January 2025

Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China. E-mail:

The proteasome, an evolutionarily conserved proteolytic complex comprising the 20S core particle and 19S regulatory particles, performs both shared and distinct functions across various tissues and organs. Spermatogenesis, a highly complex developmental process, relies on proteasome activity at multiple stages to regulate protein turnover. In this study, we selected the 20S subunit PSMA1 and 19S regulatory subunit PSMD2 to investigate the potential functions of the proteasome in spermatogenesis.

View Article and Find Full Text PDF

Spatiotemporal dynamics of early oogenesis in pigs.

Genome Biol

January 2025

College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.

Background: In humans and other mammals, the process of oogenesis initiates asynchronously in specific ovarian regions, leading to the localization of dormant and growing follicles in the cortex and medulla, respectively; however, the current understanding of this process remains insufficient.

Results: Here, we integrate single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to comprehend spatial-temporal gene expression profiles and explore the spatial organization of ovarian microenvironments during early oogenesis in pigs. Projection of the germ cell clusters at different stages of oogenesis into the spatial atlas unveils a "cortical to medullary (C-M)" distribution of germ cells in the developing porcine ovaries.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD(H)) and its metabolites function as crucial regulators of physiological processes, allowing cells to adapt to environmental changes such as nutritional deficiencies, genotoxic factors, disruptions in circadian rhythms, infections, inflammation, and exogenous substances. Here, we investigated whether elevated NAD(H) levels in oocytes enhance their quality and improve developmental competence following in vitro fertilization (IVF). Bovine cumulus-oocyte complexes (COCs) were matured in a culture medium supplemented with 0-100 μM nicotinamide mononucleotide (NMN), a precursor of NAD(H).

View Article and Find Full Text PDF

Heat interferes with multiple meiotic processes, leading to genome instability and sterility in flowering plants, including many crops. Despite its importance for food security, the mechanisms underlying heat tolerance of meiosis are poorly understood. In this study, we analyzed different meiotic processes in the Arabidopsis (Arabidopsis thaliana) accessions Col and Ler, their F1 hybrids, and the F2 offspring under heat stress (37 °C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!