CBF (C-repeat-binding factor) transcription factor exists widely in all kinds of plants. It is an important regulative factor in the process of plant resistance adversity. In this paper, Camellia sinensis CBF1 gene sequence was analyzed by Codon W, CHIPS, and CUSP programs online, and then compared with C. sinensis genes, genomes in other species, and CBF genes from 39 plant species. It is important to identify the codon usage of CsCBF1 gene and select appropriate expression systems. The results showed that CsCBF1 gene and selected 70 C. sinensis genes had distinct usage differences. CsCBF1 gene was bias toward the synonymous codons with G and C at the third codon position, but 70 C. sinensis genes were bias toward the synonymous codons with A and T. The differences in codon usage frequency between CsCBF1 gene and dicotyledons such as Arabidopsis thaliana and Nicotiana tobacum were less than monocotyledons such as wheat (Triticum aestivum) and corn (Zea mays). Therefore, A. thaliana and N. tobacum expression systems may be more suitable for the expression of CsCBF1 gene. The analysis results of CBF genes from 40 plant species also showed that most of the CBF genes were bias toward the synonymous codons with G and C at the third codon position. The reason of this phenomenon is possible due to special functions of these genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3724/sp.j.1005.2012.01614 | DOI Listing |
Plant J
December 2024
Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
Tea plants are perennial evergreen woody crops that originated in low latitudes but have spread to high latitudes. Bud dormancy is an important adaptation mechanism to low temperatures, and its timing is economically significant for tea production. However, the core molecular networks regulating dormancy and bud break in tea plants remain unclear.
View Article and Find Full Text PDFPlant Physiol Biochem
October 2024
Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. Electronic address:
Phytochrome-interacting factors (PIFs) are pivotal transcriptional regulators controlling photomorphogenesis, environmental responses, and development in plants. However, their specific roles in coordinating adaptation towards abiotic stress and metabolism remain underexplored in tea plants. Here, we identified seven PIF members from four distinct clades (PIF1, PIF3, PIF7, and PIF8).
View Article and Find Full Text PDFPlant Physiol
October 2024
State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
J Integr Plant Biol
December 2023
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Low-temperature (LT) stress threatens cucumber production globally; however, the molecular mechanisms underlying LT tolerance in cucumber remain largely unknown. Here, using a genome-wide association study (GWAS), we found a naturally occurring single nucleotide polymorphism (SNP) in the STAYGREEN (CsSGR) coding region at the gLTT5.1 locus associated with LT tolerance.
View Article and Find Full Text PDFPlants (Basel)
November 2022
Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary.
Cold-acclimated and non-acclimated contrasting Camelina ( L.) biotypes were investigated for changes in stress-associated biomarkers, including antioxidant enzyme activity, lipid peroxidation, protein, and proline content. In addition, a well-known freezing tolerance pathway participant known as C-repeat/DRE-binding factors (CBFs), an inducer of CBF expression (ICE1), and a cold-regulated () genes of the ICE-CBF-COR pathway were studied at the transcriptional level on the doubled-haploid (DH) lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!