A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of the re-circulating tracer well test method to determine nitrate reaction rates in shallow unconfined aquifers. | LitMetric

Five re-circulating tracer well tests (RCTWTs) have been conducted in a variety of aquifer settings, at four sites across New Zealand. The tests constitute the first practical assessment of the two-well RCTWT methodology described by Burbery and Wang (Journal of Hydrology, 2010; 382:163-173) and were aimed at evaluating nitrate reaction rates in situ. The performance of the RCTWTs differed significantly at the different sites. The RCTWT method performed well when it was applied to determine potential nitrate reaction rates in anoxic, electro-chemically reductive, nitrate-free aquifers of volcanic lithology, on the North Island, New Zealand. Regional groundwater flow was not fast-flowing in this setting. An effective first-order nitrate reaction rate in the region of 0.09 d(-1) to 0.26 d(-1) was determined from two RCTWTs applied at one site where a reaction rate of 0.37 d(-1) had previously been estimated from a push-pull test. The RCTWT method performed poorly, however, in a fast-flowing, nitrate-impacted fluvio-glacial gravel aquifer that was examined on the South Island, New Zealand. This setting was more akin to the hypothetical physiochemical problem described by Burbery and Wang (2010). Although aerobic conditions were identified as the primary reason for failure to measure any nitrate reaction in the gravel aquifer, failure to establish significant interflow in the re-circulation cell due to the heterogeneous nature of the aquifer structure, and natural variability exhibited in nitrate contaminant levels of the ambient groundwater further contributed to the poor performance of the test. Our findings suggest that in practice, environmental conditions are more complex than assumed by the RCTWT methodology, which compromises the practicability of the method as one for determining attenuation rates in groundwater based on tracing ambient contaminant levels. Although limited, there appears to be a scope for RCTWTs to provide useful information on potential attenuation rates when reactants are supplemented to the aquifer system under examination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2012.11.006DOI Listing

Publication Analysis

Top Keywords

nitrate reaction
20
reaction rates
12
re-circulating tracer
8
tracer well
8
rctwt methodology
8
described burbery
8
burbery wang
8
rctwt method
8
method performed
8
island zealand
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!