The intestinal epithelia form the first line of defense against harmful agents in the gut lumen of most monogastric vertebrates, including teleost fishes. Previous investigations into the effect of starvation on the intestinal epithelia of teleost fishes have focused primarily on changes in morphological characteristics and targeted molecular analysis of specific enzymes. The goal of this study was to use a comprehensive approach to help reveal how the intestinal epithelia of carnivorous teleost fishes acclimate to short-term nutrient deprivation. We utilized two-dimensional gel electrophoresis (2-DE) to conduct the proteomic analysis of the mucosal and epithelial layer of the anterior gut intestinal tract (GIT) from satiation fed vs. 4 week starved rainbow trout (Oncorhynchus mykiss). A total of 40 proteins were determined to be differentially expressed and were subsequently picked for in-gel trypsin digestion. Peptide mass fingerprint analysis was conducted using matrix assisted laser desorption time-of-flight/time-of-flight. Nine of the 11 positively identified proteins were directly related to innate immunity. The expression of α-1 proteinase inhibitor decreased in starved vs. fed fish. Also, the concentration of one leukocyte elastase inhibitor (LEI) isomer decreased in starved fish, though the concentration of another LEI isomer increased in due to starvation. In addition, starvation promoted an increased concentration of the important xenobiotic-transporter p-glycoprotein. Finally, starvation resulted in a significant increase in type II keratin E2. Overall, our results indicate that starvation promoted a reduced capacity to inhibit enzymatic stress but increased xenobiotic resistance and paracellular permeability of epithelial cells in the anterior intestine of rainbow trout.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbd.2012.11.001 | DOI Listing |
Open Biol
January 2025
Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia.
Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
January 2025
Department of Infectious Diseases, Unit of Foodborne and Neglected Parasitic Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy. Electronic address:
Giardia duodenalis is a widespread intestinal protozoan that affects mammals, including humans. Symptoms can range from being subclinical to causing severe abdominal pain and diarrhoea. Giardiasis often requires repeated treatment with synthetic drugs like metronidazole.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Institute for Molecular Medicine, Health and Medical University Potsdam, Potsdam, Germany.
Ca and Mg are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca and Mg can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca and Mg from supplements is significantly lower than that from milk products.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Chemistry, Simon Fraser University Burnaby British Columbia Canada. Electronic address:
Prostaglandin E receptor type 4 (EP4) agonists have been shown to be effective in treating experimental ulcerative colitis (UC) in animals and in human clinical trials, but their development has been impeded by unacceptable systemic side effects. In this study, a series of methylene phosphate prodrugs of a highly potent and selective prostaglandin EP4 receptor agonist were designed to target and remain localized in the gastrointestinal (GI) tract after either oral or rectal instillation. The prodrugs were designed to be converted to liberate active EP4 agonist by intestinal alkaline phosphate (IAP), a ubiquitous enzyme found at the luminal of the intestinal wall thus exposing the colon epithelial barrier while reducing systemic exposure to the active agonist.
View Article and Find Full Text PDFAm J Surg Pathol
January 2025
Division of Pathology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!