Breast cancer constitutes a major health problem for women worldwide. However, its incidence varies between populations and geographical locations. These variations could be diet-related, since there are several carcinogenic compounds in the modern diet, while natural products contain various anti-cancer elements. Several lines of evidence indicate that, in addition to their clear preventive effect, these compounds could also be used as therapeutic agents. In the present report we have shown that oleuropein, a pharmacologically safe natural product of olive leaf, has potent anti-breast cancer properties. Indeed, oleuropein exhibits specific cytotoxicity against breast cancer cells, with higher effect on the basal-like MDA-MB-231 cells than on the luminal MCF-7 cells. This effect is mediated through the induction of apoptosis via the mitochondrial pathway. Moreover, oleuropein inhibits cell proliferation by delaying the cell cycle at S phase and up-regulated the cyclin-dependent inhibitor p21. Furthermore, oleuropein inhibited the anti-apoptosis and pro-proliferation protein NF-κB and its main oncogenic target cyclin D1. This inhibition could explain the great effect of oleuropein on cell proliferation and cell death of breast cancer cells. Therefore, oleuropein warrants further investigations to prove its utility in preventing/treating breast cancer, especially the less-responsive basal-like type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2012.12.009 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114 (Postal Code: 45142), Jazan, Kingdom of Saudi Arabia.
Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.
Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.
Adv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.
View Article and Find Full Text PDFSmall
January 2025
College of Osteopathic Medicine, Liberty University, Lynchburg, VA, 24502, USA.
Using a combined top-down (i.e., operator-directed) and bottom-up (i.
View Article and Find Full Text PDFJ Pharm Policy Pract
January 2025
Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.
Background: Cancer cases in the Kingdom of Saudi Arabia (KSA) have tripled in recent years. Quality of Life (QoL) measurements are crucial for healthcare professionals because they reveal important information about how patients respond to drugs and their general health. This study aimed to collect and summarise articles exploring the QoL of patients undergoing oncology treatments in KSA.
View Article and Find Full Text PDFMater Today Bio
February 2025
Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!