The title molecule, 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine (C(33)H(25)N(5)), was synthesized and characterized by elemental analysis, FT-IR spectroscopy, one- and two-dimensional NMR spectroscopies, and single-crystal X-ray diffraction. In addition, the molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) (1)H and (13)C NMR chemical shift values of the title compound in the ground state have been calculated using the density functional theory at the B3LYP/6-311G(d,p) level, and compared with the experimental data. The complete assignments of all vibrational modes were performed by potential energy distributions using VEDA 4 program. The geometrical parameters of the optimized structure are in good agreement with the X-ray crystallographic data, and the theoretical vibrational frequencies and GIAO (1)H and (13)C NMR chemical shifts show good agreement with experimental values. Besides, molecular electrostatic potential (MEP) distribution, frontier molecular orbitals (FMO) and non-linear optical properties of the title compound were investigated by theoretical calculations at the B3LYP/6-311G(d,p) level. The linear polarizabilities and first hyper polarizabilities of the molecule indicate that the compound is a good candidate of nonlinear optical materials. The thermodynamic properties of the compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2012.11.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!