To develop a chemical stimulus-responsive substrate for culturing cells, polyethyleneimine (PEI) having a pyridyl disulfide moiety was attached via disulfide linkages to a glass coverslip modified with a silane coupling agent having a thiol group. The surface modification was confirmed by X-ray photoelectron spectroscopy and zeta potential analysis. The obtained surface exhibited sufficiently high cell adhesiveness. Zeta potential measurements revealed that the PEI derivatives were released from the surface through thiol-disulfide exchange when the modified glass coverslip was immersed in a neutral pH buffer containing cysteine. The cell viability assay demonstrated that this chemical stimulus was substantially nontoxic to 293T cells. Because PEI is a widely used transfection reagent, this functional glass coverslip would be potentially useful as an experimental platform for reverse transfection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2012.10.031DOI Listing

Publication Analysis

Top Keywords

glass coverslip
12
thiol-disulfide exchange
8
zeta potential
8
preparation cell-culturing
4
glass
4
cell-culturing glass
4
glass surfaces
4
surfaces release
4
release branched
4
branched polyethyleneimine
4

Similar Publications

In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption.

View Article and Find Full Text PDF

Curcumin is an antioxidant and anti-inflammatory molecule that may provide neuroprotection following central nervous system (CNS) injury. However, curcumin is hydrophobic, limiting its ability to be loaded and then released from biomaterials for neural applications. We previously developed polymers containing curcumin, and these polymers may be applied to neuronal devices or to neural injury to promote neuroprotection.

View Article and Find Full Text PDF

Morphological and molecular characterization of a Sarcocystis bovifelis-like sarcocyst in American beef.

Parasit Vectors

December 2024

United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Centre, Animal Parasitic Diseases Laboratory, Beltsville, MD, 20705-2350, USA.

Background: Parasites in the apicomplexan genus Sarcocystis infect cattle worldwide. Assessing the economic importance of each such parasite species requires proper diagnosis. Sarcocystis cruzi, a thin-walled species, infects virtually all cattle.

View Article and Find Full Text PDF

Plasma nitriding is one of the surface modifications that show more effectiveness than other methods. In this study, the plasma-based ion implantation (PBII) technique was performed on the surface of titanium alloy (Ti-6Al-4V, Ti64) using a mixture of nitrogen (N) and argon (Ar), resulting in a plasma-nitrided surface (TiN-Ti64). The surface composition of the TiN-Ti64 was verified through X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Broaden properties of ambroxol hydrochloride as an antibiofilm compound.

Rev Argent Microbiol

December 2024

Lab. De Biofilms Microbianos, Dept. de Microbiología, Inst. de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay. Electronic address:

Biofilm-associated microorganisms can cause many infections and are an important cause of resistance to several antimicrobials. The antibiotic crisis has led to a pressing need for new therapeutic tools. Ambroxol is frequently used as a mucolytic agent in respiratory diseases with increased mucus production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!