The ability of cryopreserved chondrocytes to revitalize and propagate is a key biotechnology in cartilage regeneration. This study shows the formation of neocartilage from cryopreserved chondrocytes in scaffolds grafted with elastin and poly-L-lysine. Cryopreserved chondrocytes in elastin- and poly-L-lysine-grafted constructs were cultured in a dynamic bioreactor and assessed by biochemical assay and staining. Elastin demonstrated a better efficacy for recruiting cryopreserved chondrocytes onto the pore surface of constructs than poly-L-lysine. However, surface elastin and poly-L-lysine did not significantly enhance the biocompatibility to cryopreserved chondrocytes. Chondrocytes multiplied from cryopreserved chondrocytes in elastin-grafted constructs is faster than that in poly-L-lysine-grafted constructs. In addition, elastin could stimulate cryopreserved chondrocytes to synthesize more glycosaminoglycans and collagen than poly-L-lysine. Porous biomaterials with surface elastin and poly-L-lysine can maintain active chondrocytic proliferation and extracellular matrix secretion from chondrocytes with appropriate cryopreservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2012.11.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!