In natural populations of the human parasite Schistosoma mansoni, parasite distribution among snail intermediate hosts is generally overdispersed, such that a small proportion of hosts harbor the majority of parasite genotypes. Within these few infected snails, researchers have found that it can be common for hosts to harbor multiple parasite genotypes, creating circumstances in which co-infecting parasites are faced with potential competition over limited host resources. Much theoretical modeling has focused on parasite competition, especially regarding the influence of co-infection on parasite exploitation strategy evolution. However, particularly in the case of intra-molluscan intermediate stages, empirical investigations of parasite-parasite competition have often hinged on the untested assumption that co-exposure produces co-infection. That is, infected hosts exposed to multiple strains have been assumed to harbor multiple strains, regardless of the true nature of the infection outcome. Here we describe a real-time quantitative PCR method to distinguish the conditions of multiple- versus single-strain infection, as well as quantify the relative larval output of co-infecting strains. We applied the method to an empirical investigation of intraspecific parasite competition between S. mansoni strains within the intermediate snail host Biomphalaria glabrata, assessing co-exposure's effects on parasite infectivity and productivity and the concomitant effects on host fitness. Overall, there was no effect of parasite co-infection on snail life history traits relative to single-strain infection. Parasite infectivity significantly increased as a result of increasing overall miracidial dose, rather than co-exposure, though strain-specific productivity was significantly reduced in co-infections in manner consistent with resource competition. Moreover, we show that less than half of infected, co-exposed hosts had patent co-infections and demonstrate the utility of this molecular tool for the study of trematode life history variation in molluscan hosts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563714 | PMC |
http://dx.doi.org/10.1016/j.molbiopara.2012.12.003 | DOI Listing |
BMC Genomics
January 2025
Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
The E. coli strains harboring the polyketide synthase (pks) island encode the genotoxin colibactin, a secondary metabolite reported to have severe implications for human health and for the progression of colorectal cancer. The present study involves whole-genome-wide comparison and phylogenetic analysis of pks harboring E.
View Article and Find Full Text PDFNature
January 2025
Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
Our understanding of type 2 immunity has undergone a substantial transformation in recent years, revealing previously unknown functions. Beyond its canonical role in defence against parasitic helminth infections, type 2 immunity safeguards the host through additional mechanisms, including the suppression of excessive type 1 immune responses, regulation of tissue repair and maintenance of adipose tissue homeostasis. However, unlike type 1 immune responses, type 2 immunity is perceived as a potential promoter of tumorigenesis.
View Article and Find Full Text PDFSci Rep
January 2025
Association of Coding, Technology, and Genomics (ACTG), Sher-e-Bangla Agricultural University (SAU), Dhaka, 1207, Bangladesh.
In Bangladesh, farming serves as a key livelihood, leading to a higher risk of zoonotic diseases due to frequent animal interactions and traditional practices. The study aimed to assess the knowledge, attitudes, and practices of livestock farmers regarding zoonotic disease outbreaks. A cross-sectional study was conducted with 658 livestock farmers from randomly selected regions in Bangladesh from April to June 2024.
View Article and Find Full Text PDFNat Commun
January 2025
State key laboratory of rice biology and breeding & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
Feeding and oviposition by phytophagous insects are both known to trigger defenses in plants. Whether these two defenses functionally interact remains poorly studied, although these interactions are likely important for pests with overlapping generations. Here we investigated the differences and interaction between feeding- and oviposition-induced plant defenses triggered by the brown planthopper (BPH, Nilaparvata lugens), which gregariously feeds and oviposits on rice.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Pharmacy, Panipat Institute of Engineering & Technology (PIET) Samalkha, Panipat, Haryana-132102, India.
Phenyl amino pyrimidine attracts researchers due to its versatile scaffold and medicinal significance. This significant moiety present in the Imatinib contributed to medicinal chemistry. In this manuscript, we reviewed various derivatives of Imatinib containing 2-phenylaminopyrimidine, which has a variety of roles, especially in the anti-cancer category.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!