In this article, we aimed at investigating the interaction between breathing and swallowing patterns in normal subjects. Ten healthy volunteers were included in the study. Diaphragm EMG activity was recorded by a needle electrode inserted into the 7th or 8th intercostal space. Swallowing was monitored by submental EMG activity, and laryngeal vertical movement was recorded by using a movement sensor. A single voluntary swallow was initiated during either the inspiration or expiration phases of respiration, and changes in EMG activity were evaluated. When a swallow coincided with either inspiration or expiration, the duration of the respiratory phase was prolonged. Normal subjects were able to voluntarily swallow during inspiration. During the inspiration phase with swallowing, diaphragmatic activity did not ceased and during the expiration phase with swallowing, there was a muscle activity in the diaphragm muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jelekin.2012.11.016DOI Listing

Publication Analysis

Top Keywords

emg activity
12
interaction breathing
8
breathing swallowing
8
normal subjects
8
inspiration expiration
8
phase swallowing
8
swallowing
5
activity
5
swallowing healthy
4
healthy individuals
4

Similar Publications

For trained individuals such as athletes and musicians, learning often plateaus after extensive training, known as the "ceiling effect." One bottleneck to overcome it is having no prior physical experience with the skill to be learned. Here, we challenge this issue by exposing expert pianists to fast and complex finger movements that cannot be performed voluntarily, using a hand exoskeleton robot that can move individual fingers quickly and independently.

View Article and Find Full Text PDF

Disruption of the blood supply to a limb in conjunction with active movement boosts muscle growth, aids in rehabilitation, and allows controlled exploration of the sensorimotor system. Yet, the underlying neuromechanical changes have not been observed in great detail. This study aims to report the acute neuromuscular effects of temporary blood flow restriction (BFR) through behavioral changes at the level of motor units (MUs) using high-density surface electromyography on the abductor digiti minimi muscle during 20 trapezoidal and sinusoidal isometric force tracking tasks (5 pre-BFR, 5 during BFR, and 10 post-BFR).

View Article and Find Full Text PDF

While active back-support exoskeletons can reduce mechanical loading of the spine, current designs include only one pair of actuated hip joints combined with a rigid structure between the pelvis and trunk attachments, restricting lumbar flexion and consequently intended lifting behavior. This study presents a novel active exoskeleton including actuated lumbar and hip joints as well as subject-specific exoskeleton control based on a real-time active low-back moment estimation. We evaluated the effect of exoskeleton support with different lumbar-to-hip (L/H) support ratios on spine loading, lumbar kinematics, and back muscle electromyography (EMG).

View Article and Find Full Text PDF

Sensorless model-based tension control for a cable-driven exosuit.

Wearable Technol

December 2024

Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.

Cable-driven exosuits have the potential to support individuals with motor disabilities across the continuum of care. When supporting a limb with a cable, force sensors are often used to measure tension. However, force sensors add cost, complexity, and distal components.

View Article and Find Full Text PDF

Electromyogram (EMG) has been a fundamental approach for prosthetic hand control. However it is limited by the functionality of residual muscles and muscle fatigue. Currently, exploring temporal shifts in brain networks and accurately classifying noninvasive electroencephalogram (EEG) for prosthetic hand control remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!