A highly sensitive reverse sandwich immunoassay for the detection of human cardiac myoglobin (cMb) in serum was designed utilizing a gold nanoparticle (AuNP)-enhanced surface plasmon resonance (SPR) biosensor. First, a monoclonal anti-cMb antibody (Mab1) was covalently immobilized on the sensor surface. AuNPs were covalently conjugated to the second monoclonal anti-cMb antibody (Mab2) to form an immuno-gold reagent (Mab2-AuNP). The reverse sandwich immunoassay consists of two steps: (1) mixing the serum sample with Mab2-AuNP and incubation for the formation of cMb/Mab2-AuNP complexes and (2) sample injection over the sensor surface and evaluation of the Mab1/cMb/Mab2-AuNP complex formation, with the subsequent calculation of the cMb concentration in the serum. The biosensor signal was amplified approximately 30-fold compared with the direct reaction of cMb with Mab1 on the sensor surface. The limit of detection of cMb in a human blood serum sample was found to be as low as 10 pM (approx. 0.18 ng mL(-1)), and the inter-assay coefficient of variation was less than 3%. Thus, the developed SPR-based reverse sandwich immunoassay has a sensitivity that is sufficient to measure cMb across a wide range of normal and pathological concentrations, allowing an adequate estimation of the disease severity and the monitoring of treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2012.10.053DOI Listing

Publication Analysis

Top Keywords

reverse sandwich
16
sandwich immunoassay
16
sensor surface
12
highly sensitive
8
detection human
8
human cardiac
8
cardiac myoglobin
8
surface plasmon
8
plasmon resonance
8
monoclonal anti-cmb
8

Similar Publications

Carrageenan has strong structural heterogeneity, resulting in the production of several hybridized forms in nature. Furcellaran is a typical hybrid type of carrageenan that includes both κ-carrageenan and β-carrageenan motifs in its structure. The discovery and characterization of a novel furcellaranase is of great significance for investigating and determining the structures of carrageenan.

View Article and Find Full Text PDF

Electrochemiluminescence immunosensor using a lanthanum-based metal-organic framework as signal probe and CuMoS as a co-reaction promoter for the sensitive detection of anti-Müllerian hormone.

Talanta

December 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China. Electronic address:

In this study, we used meso-tetra (4-carboxyphenyl) porphyrin (TCPP) as an organic ligand to modify a lanthanide-based metal-organic framework as an electrochemiluminescence (ECL) platform to sensitively detect anti-Müllerian hormone (AMH). La-MOF amplified the ECL signal by suppressing the aggregation-caused quenching created by TCPP self-aggregation. Utilizing the reversible cycling of the mixed-valence transition metal ion (Cu/Cu and Mo/Mo) and the electrical conductivity of CuMoS and silver nanoparticle (AgNP), CuMoS-AgNP as a dual co-reaction promoter constantly generated sulfate radical anions (SO) and thus amplified the ECL signal.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating high-quality transparent electrodes without using indium by developing Mg, Al, and Ga co-doped ZnO/Cu/MgZnO multilayer thin films through magnetron sputtering.
  • As the thickness of the copper layer increases from 0 to 25 nm, the crystal orientation of ZnO decreases while that of Cu increases, leading to a smoother and more defect-free film surface.
  • An optimal copper layer thickness of 11 nm achieves the best photoelectric performance, with a resistivity of 1.24×10⁻⁴ Ω cm and a visible light transmittance of 84.2%, while doping with magnesium significantly enhances the films' optoelectronic properties.
View Article and Find Full Text PDF

Sandwich-Like MXene@MnO@PPy Hollow Microspheres Synergistically Enabled Ultra-long Cycling Life in Aqueous Zinc Ion Batteries.

Small

December 2024

School of Chemistry and Chemical Engineering, Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing, 10081, China.

Manganese-based oxides are be regarded as one of the most promising cathode materials for aqueous zinc ion batteries (AZIBs). A major restriction of manganese-based oxides in practical applications is their unsatisfied structural stability due to the irreversible manganese dissolution. Additionally, the poor electrical conductivity also limits the rate capability.

View Article and Find Full Text PDF

Dysprosium single-molecule magnets (SMMs) with two mutually -anionic ligands have shown large crystal field (CF) splitting, giving record effective energy barriers to magnetic reversal ( ) and hysteresis temperatures ( ). However, these complexes tend to be bent, imposing a transverse field that reduces the purity of the projections of the CF states and promotes magnetic relaxation. A complex with only one charge-dense anionic ligand could have more pure CF states, and thus high and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!