Cell-cell transmission allows human T-lymphotropic virus 1 to circumvent tetherin restriction.

Virology

HIV-Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.

Published: February 2013

Tetherin is part of the cellular innate immunity and impedes cell-free transmission of viruses that bud from the plasma membrane by retaining them on the cell surface. Some viruses have evolved activities in different proteins such as Vpu (HIV-1), K-protein (KSHV), Nef (SIV) or Env (HIV-2) to downregulate tetherin and overcome its restriction. We found that chronically HTLV-1 infected T-cell lines express eightfold more tetherin than uninfected transformed T-cell lines suggesting that tetherin expression is not inhibited by the virus. We observed that even small amounts of exogenous tetherin caused the retention of HTLV-1 on the cell surface and severely reduced cell-free infectivity of HTLV-1, but that cell-cell transmission, which is more relevant for HTLV-1, was significantly less decreased. However, knock-down of tetherin expresssion resulted in a slight increase in cell-cell infection indicating that the protein does not enhance this route of transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2012.11.012DOI Listing

Publication Analysis

Top Keywords

cell-cell transmission
8
cell surface
8
t-cell lines
8
tetherin
7
transmission allows
4
allows human
4
human t-lymphotropic
4
t-lymphotropic virus
4
virus circumvent
4
circumvent tetherin
4

Similar Publications

HIV-1 and BLV are insensitive to SERINC5 restriction under the cell-cell infection.

Microbiol Spectr

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

ine orporator 5 (INC5, SER5) suppresses viral cell-free infection. However, its antiviral potency under viral cell-cell infection is not examined yet. Here, we established the cell-cell infection systems to assess SER5's antiviral activity on HIV-1 and bovine leukemia virus (BLV).

View Article and Find Full Text PDF

Intercellular mRNA transfer alters the human pluripotent stem cell state.

Proc Natl Acad Sci U S A

January 2025

Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.

Intercellular transmission of messenger RNA (mRNA) is being explored in mammalian species using immortal cell lines. Here, we uncover an intercellular mRNA transfer phenomenon that allows for the adaptation and reprogramming of human primed pluripotent stem cells (hPSCs). This process is induced by the direct cell contact-mediated coculture with mouse embryonic stem cells under the condition impermissible for primed hPSC culture.

View Article and Find Full Text PDF

Background: The hippocampus has been widely reported to be involved in the neuropathology of major depressive disorder (MDD). All the previous researches adopted group-level hippocampus subregions atlas to investigate abnormal functional connectivities in MDD in absence of capturing individual variability. In addition, the molecular basis of functional impairments of hippocampal subregions in MDD remains elusive.

View Article and Find Full Text PDF

In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a common mood condition affecting multiple brain regions and cell types. Changes in astrocyte function contribute to depressive-like behaviors. However, while neuronal mechanisms driving MDD have been studied in some detail, molecular mechanisms by which astrocytes promote depression have not been extensively explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!