A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tailorable cell culture platforms from enzymatically cross-linked multifunctional poly(ethylene glycol)-based hydrogels. | LitMetric

Tailorable cell culture platforms from enzymatically cross-linked multifunctional poly(ethylene glycol)-based hydrogels.

Biomacromolecules

Tissue Engineering and Microfluidics Laboratory, The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD, Australia.

Published: February 2013

As stem-cell-based therapies rapidly advance toward clinical applications, there is a need for cheap, easily manufactured, injectable gels that can be tailored to carry stem cells and impart function to such cells. Herein we describe a process for making hydrogels composed of hydroxyphenyl propionic acid (HPA) conjugated, branched poly(ethylene glycol) (PEG) via an enzyme mediated, oxidative cross-linking method. Functionalization of the branched PEG with HPA at varying degrees of substitution was confirmed via attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and (1)H NMR. The versatility of this hydrogel system was exemplified through variations in the degree of HPA substitution, polymer concentration, and the concentration of cross-linking reagents (horseradish peroxidase and H(2)O(2)), which resulted in a range of mechanical properties and gelation kinetics for these gels. Cross-linking of the PEG-HPA conjugate with a recombinantly produced Fibronectin fragment (Type III domains 7-10) encouraged attachment and spreading of human mesenchymal stem cells (hMSCs) when assessed in both two-dimensional and three-dimensional formats. Interestingly, when encapsulated in both nonfunctionalized and functionalized cross-linked PEG-HPA gels, MSCs showed good viability over all time periods assessed. With tunable gelation kinetics and mechanical properties, these hydrogels provide a flexible in vitro cell culture platform that will likely have significant utility in tissue engineering as an injectable delivery platform for cells to sites of tissue damage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm301652qDOI Listing

Publication Analysis

Top Keywords

cell culture
8
stem cells
8
mechanical properties
8
gelation kinetics
8
tailorable cell
4
culture platforms
4
platforms enzymatically
4
enzymatically cross-linked
4
cross-linked multifunctional
4
multifunctional polyethylene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!