Neisseria meningitidis α-1,4-galactosyltransferase C (LgtC) is responsible for the transfer of α-galactose from donor UDP-galactose to the lipooligosaccharide terminal acceptor lactose. Crystal structures of its substrate analogue complexes have provided key insights into the galactosyl transfer mechanism, including a hypothesized need for active site mobility. Accordingly, we have used nuclear magnetic resonance spectroscopy to probe the structural dynamics of LgtC in its apo form and with bound substrate analogues. More than the expected number of signals were observed in the methyl-TROSY spectra of apo LgtC, indicating that the protein adopts multiple conformational states. Magnetization transfer experiments showed that the predominant states, termed "a" and "b", are in equilibrium on a time scale of seconds. Their relative populations change with temperature and mutations, and only the "b" state is competent for substrate binding. For both states, relaxation dispersion studies also revealed substantial millisecond time scale motions of isoleucine side chains within and distal to the active site. Although altered, these motions were still detected in LgtC with a noncovalently bound donor analogue. A mutant, LgtC-Q189E, which forms an unexpected glycosyl-enzyme intermediate via a residue (Asp190) distal from its active site, was also investigated. Apo LgtC-Q189E did not show any enhanced motions that might account for the dramatic structural change required for the galactosylation of Asp190, yet formation of a trapped glycosyl-enzyme intermediate substantially reduced its millisecond time scale conformational mobility. Although further studies are required to link the detected motions of LgtC with its enzymatic mechanism, this work clearly demonstrates the complex structural dynamics of a model glycosyltransferase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi301317dDOI Listing

Publication Analysis

Top Keywords

structural dynamics
12
active site
12
time scale
12
neisseria meningitidis
8
nuclear magnetic
8
magnetic resonance
8
resonance spectroscopy
8
millisecond time
8
distal active
8
glycosyl-enzyme intermediate
8

Similar Publications

The COVID-19 pandemic may have exacerbated mental health conditions by introducing and/or modifying stressors, particularly in university populations. We examined longitudinal patterns, time-varying predictors, and contemporaneous correlates of moderate-severe psychological distress (MS-PD) among college students. During 2020-2021, participants completed self-administered questionnaires quarterly (T1 = 562, T2 = 334, T3 = 221, and T4 = 169).

View Article and Find Full Text PDF

High-temperature structural disorders stabilize hydrous aluminosilicates in the mantle transition zone.

Nat Commun

January 2025

Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.

Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.

View Article and Find Full Text PDF

Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.

View Article and Find Full Text PDF

Atrial fibrillation versus. atrial myopathy in thrombogenesis: Two sides of the same coin?

Trends Cardiovasc Med

January 2025

Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Medical University of Bialystok, Bialystok, Poland.

Atrial fibrillation (AF) and atrial myopathy are recognized contributors to cardiovascular morbidity, particularly ischemic stroke. AF poses an elevated risk of thrombogenesis due to irregular heart rhythm leading to blood stasis and clot formation. Atrial myopathy, marked by structural and functional alterations in the atria, is emerging as a crucial factor influencing thromboembolic events, independently of AF.

View Article and Find Full Text PDF

Thio/selenoimidazole Nπ-methyltransferases are an emerging family of enzymes catalyzing the final step in the production of the S/Se-containing histidine-derived antioxidants ovothiol and ovoselenol. These enzymes, prevalent in prokaryotes, show minimal sequence similarity to other methyltransferases, and the structural determinants of their reactivities remain poorly understood. Herein, we report ligand-bound crystal structures of OvsM from the ovoselenol pathway as well as a member of a previously unknown clade of standalone ovothiol-biosynthetic Nπ-methyltransferases, which we have designated OvoM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!