We experimentally demonstrate reordering throughout the inside of an individual bipolar nematic liquid-crystalline microdroplet optically trapped by a highly focused laser beam, when the laser powers are above a definite threshold. The threshold depends on the droplet size and laser polarization. A physical interpretation of the results is presented by considering the nonlocal orientations of the nematic liquid-crystal molecules in the droplets with the dimensions on the order of the focal spot diameter or larger. On the basis of the finite size approximation, we show that the dependence of threshold power on the droplet size is calculated to be in qualitative agreement with the experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp308596hDOI Listing

Publication Analysis

Top Keywords

droplet size
12
polarization droplet
4
size
4
size effects
4
effects laser-trapping-induced
4
laser-trapping-induced reconfiguration
4
reconfiguration individual
4
individual nematic
4
nematic liquid
4
liquid crystal
4

Similar Publications

Ionization and fragmentation are at the core of mass spectrometry. But they are not necessarily separated in space, as in-source fragmentation can also occur. Here, we survey the literature published since our 2005 review on the internal energy and fragmentation in electrospray ionization sources.

View Article and Find Full Text PDF

Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.

View Article and Find Full Text PDF

This study developed a W/O/W emulsion gel encapsulating proanthocyanidins from Aronia melanocarpa (Michx.) Elliott (APC) using polyglycerol ricinoleate (PGPR) as the lipophilic emulsifier and sodium caseinate (NaCN)-alginate (Alg) as the hydrophilic emulsifier. The optimal preparation process was established based on particle size, zeta potential, phase separation, centrifugal stability, and microscopic morphology: 4.

View Article and Find Full Text PDF

Formulation of catechin hydrate nanoemulsion for fortification of yogurt.

J Food Sci Technol

February 2025

Department of Food Process Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 India.

Unlabelled: Catechin hydrate (CH) is a kind of polyphenol present in many plantsincluding green tea, fruits, red wine and cocoa with very good antioxidant effect. The formulation of CH nanoemulsion increased the bioavailability and stability of catechin, allowing for easier food incorporation and faster absorption by the body. The major goal of the current study was to create a nanoemulsion as a reliable delivery mechanism for catechin hydrate and its incorporation into yogurt to increase its antioxidant activity.

View Article and Find Full Text PDF

Droplet coalescence in microchannels is a complex phenomenon influenced by various parameters such as droplet size, velocity, liquid surface tension, and droplet-droplet spacing. In this study, we thoroughly investigate the impact of these control parameters on droplet coalescence dynamics within a sudden expansion microchannel using two distinct numerical methods. Initially, we employ the boundary element method to solve the Brinkman integral equation, providing detailed insights into the underlying physics of droplet coalescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!