Background: During the extremely challenging 4,487 km ultramarathon TransEurope-FootRace 2009, runners showed considerable reduction of body weight. The effects of this endurance run on brain volume changes but also possible formation of brain edema or new lesions were explored by repeated magnetic resonance imaging (MRI) studies.
Methods: A total of 15 runners signed an informed consent to participate in this study of planned brain scans before, twice during, and about 8 months after the race. Because of dropouts, global gray matter volume analysis could only be performed in ten runners covering three timepoints, and in seven runners who also had a follow-up scan. Scanning was performed on three identical 1.5 T Siemens MAGNETOM Avanto scanners, two of them located at our university. The third MRI scanner with identical sequence parameters was a mobile MRI unit escorting the runners. Volumetric 3D datasets were acquired using a magnetization prepared rapid acquisition gradient echo (MPRAGE) sequence. Additionally, diffusion-weighted (DWI) and fluid attenuated inversion recovery (FLAIR) imaging was performed.
Results: Average global gray matter volume as well as body weight significantly decreased by 6% during the race. After 8 months, gray matter volume returned to baseline as well as body weight. No new brain lesions were detected by DWI or FLAIR imaging.
Conclusions: Physiological brain volume reduction during aging is less than 0.2% per year. Therefore a volume reduction of about 6% during the 2 months of extreme running appears to be substantial. The reconstitution in global volume measures after 8 months shows the process to be reversible. As possible mechanisms we discuss loss of protein, hypercortisolism and hyponatremia to account for both substantiality and reversibility of gray matter volume reductions. Reversible brain volume reduction during an ultramarathon suggests that extreme running might serve as a model to investigate possible mechanisms of transient brain volume changes. However, despite massive metabolic load, we found no new lesions in trained athletes participating in a multistage ultramarathon.See related commentary http://www.biomedcentral.com/1741-7015/10/171.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566943 | PMC |
http://dx.doi.org/10.1186/1741-7015-10-170 | DOI Listing |
Front Neuroendocrinol
December 2024
Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany; Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany. Electronic address:
Estrogen fluctuations during the menstrual cycle, puberty, postpartum, or in the menopausal transition are associated with cognitive, affective, and behavioral effects. Additionally, estrogens are essential in hormonal contraception, menopausal hormone therapy, or gender-affirming hormone therapy. This systematic review summarizes findings on the role of estrogens for structure, function, and connectivity of human brain networks.
View Article and Find Full Text PDFEur Arch Psychiatry Clin Neurosci
December 2024
Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) gene polymorphism (rs638405) has been widely reported to be associated with Alzheimer's disease (AD) risk. However, studies on the relationship between BACE1 gene polymorphism (rs638405), brain volume, and cognition in AD patients remain scarce. To investigate the effect of genetic polymorphism in BACE1 on gray matter volume (GMV) and cognition in AD, this study recruited 111 cognitively unimpaired (CU) controls and 144 AD patients.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
Visual hallucinations (VH) and pareidolia, a type of minor hallucination, share common underlying mechanisms. However, the similarities and differences in their brain regions remain poorly understood in Parkinson's disease (PD). A total of 104 drug-naïve PD patients underwent structural MRI and were assessed for pareidolia using the Noise Pareidolia Test (NPT) were enrolled.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2024
Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China. Electronic address:
Background: Individual neurobiological heterogeneity among patients with tobacco use disorder (TUD) hampers the identification of neuroimaging phenotypes.
Methods: The current study recruited 122 TUD individuals and 57 healthy controls, and obtained their 3D-T1 images. Heterogeneity through discriminative analysis (HYDRA) was applied to uncover the potential subtype of TUD where regional gray matter volume (GMV) was treated as the feature.
Prog Neuropsychopharmacol Biol Psychiatry
December 2024
Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China. Electronic address:
Backgrounds: Aberrant brain structures in schizophrenia have been widely explored. However, the causal effects of negative symptoms on brain structural alterations are still unclear. This study aims to explore the synchronous and progressive alterations in gray matter volume (GMV) associated with negative symptoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!