Histone post-translational modifications (PTMs) often form complex patterns of combinations and cooperate to specify downstream biological processes. In order to systemically analyse combinatorial PTMs and crosstalks among histone PTMs, we have developed a novel nucleosome purification method called Biotinylation-assisted Isolation of CO-modified Nucleosomes (BICON). This technique is based on physical coupling of the enzymatic activity of a histone-modifying enzyme with in vivo biotinylation by the biotin ligase BirA, and using streptavidin to purify the co-modified nucleosomes. Analysing the nucleosomes isolated by BICON allows the identification of PTM combinations that are enriched on the modified nucleosomes and function together within the nucleosome context. We used this new approach to study MSK1-mediated H3 phosphorylation and found that MSK1 not only directly phosphorylated H3, but also induced hyperacetylation of both histone H3 and H4 within the nucleosome. Moreover, we identified a novel crosstalk pathway between H3 phosphorylation and H4 acetylation on K12. Involvement of these acetyl marks in MSK1-mediated transcription was further confirmed by chromatin immunoprecipitation assays, thus validating the biological relevance of the BICON results. These studies serve as proof-of-principle for this new technical approach, and demonstrate that BICON can be further adapted to study PTMs and crosstalks associated with other histone-modifying enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561940PMC
http://dx.doi.org/10.1093/nar/gks1247DOI Listing

Publication Analysis

Top Keywords

histone-modifying enzyme
8
biotin ligase
8
ptms crosstalks
8
co-modified nucleosomes
8
elucidating combinatorial
4
histone
4
combinatorial histone
4
histone modifications
4
modifications crosstalks
4
crosstalks coupling
4

Similar Publications

Maternal obesity alters histone modifications mediated by the interaction between Ezh2 and Ampk, impairing neural differentiation in the developing embryonic brain cortex.

J Biol Chem

January 2025

Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, UAE. Electronic address:

Neurodevelopmental disorders have complex origins that manifest early during embryonic growth and are associated with intricate gene regulation dynamics. A perturbed metabolic environment such as hyperglycemia or dyslipidemia, particularly due to maternal obesity, poses a threat to the optimal development of the embryonic central nervous system. Accumulating evidence suggests that these metabolic irregularities during pregnancy may alter neurogenesis pathways, thereby predisposing the developing fetus to neurodevelopmental disorders.

View Article and Find Full Text PDF

Post-transcriptional regulation of the transcriptional apparatus in neuronal development.

Front Mol Neurosci

December 2024

Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.

Post-transcriptional mechanisms, such as alternative splicing and polyadenylation, are recognized as critical regulatory processes that increase transcriptomic and proteomic diversity. The advent of next-generation sequencing and whole-genome analyses has revealed that numerous transcription and epigenetic regulators, including transcription factors and histone-modifying enzymes, undergo alternative splicing, most notably in the nervous system. Given the complexity of regulatory processes in the brain, it is conceivable that many of these splice variants control different aspects of neuronal development.

View Article and Find Full Text PDF

In aerobic life forms, reactive oxygen species (ROS) are produced by the partial reduction of oxygen during energy-generating metabolic processes. In plants, ROS production increases during periods of both abiotic and biotic stress, severely overloading the antioxidant systems. Hydrogen peroxide (H2O2) plays a central role in cellular redox homeostasis and signaling by oxidising crucial cysteines to sulfenic acid, which is considered a biologically relevant post-translational modification (PTM).

View Article and Find Full Text PDF

In obesity, C-C chemokine ligand 2 (CCL2) plays a critical role in recruiting macrophages to white adipose tissue (WAT), contributing to chronic inflammation. In this study, we sought to explore the effects of fish oil (FO) on CCL2 expression and histone (H3K27)-modifying enzymes in both human model of preadipocytes and primary adipose-derived stem cells (ASCs). Present findings in preadipocytes lineage evidenced that lipopolysaccharide (LPS) increased (∼5.

View Article and Find Full Text PDF

Transcriptomic analysis and epigenetic regulators in human oocytes at different stages of oocyte meiotic maturation.

Dev Biol

December 2024

Genetics Unit, Department of Pathology, Faculty of Medicine University of Porto (FMUP), 4200-319, Portugal; CINTESIS@RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal. Electronic address:

Human oocytes are highly specialized cells with the capacity to store and regulate mRNAs during oocyte maturation, in preparation for post-fertilization steps. Here we performed single-oocyte transcriptomic analysis of human oocytes in three meitoic maturation stages - Germinal Vesicle (GV; n = 6), Metaphase I (MI; n = 6) and Metaphase II (MII; n = 7). Single-oocyte transcriptomic analysis revealed that the total number of expressed genes progressively decreased from GV to MII stages, with 9660 genes being transcribed in GV, 8734 in MI and 5889 in MII.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!