Cardiorenal syndrome is a pathophysiological heart and kidney disorder, in which acute or chronic dysfunction of one organ induces a damage in the other. It's a syndrome more and more often encountered in clinical practice and this implies the need to recognize the syndrome through biochemical markers with a good sensitivity and specificity, since its earliest stages in order to optimize therapy. In addition to widely validated biomarkers, such as BNP, pro BNP, creatinine, GFR and cystatin C, other promising molecules are available, like NGAL (neutrophil gelatinase-associated lipocalin, KIM-1 (kidney injury molecule-1), MCP-1 (monocyte chemotactic peptide), Netrin-1, interleuchin 18 and NAG (N-acetyl-β-glucosa-minidase). The role of these emerging biomarkers is still not completely clarified: hence the need of new clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1701/1206.13356 | DOI Listing |
Extracell Vesicles Circ Nucl Acids
October 2024
Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
The intertwined nature of cardiac and renal failure, where dysfunction in one organ predicts a poor outcome in the other, has long driven the interest in uncovering the exact molecular links between the two. Elucidating the mechanisms driving Cardiorenal Syndrome (CRS) will enable the development of targeted therapies that disrupt this detrimental cycle, potentially improving outcomes for patients. A recent study by Chatterjee .
View Article and Find Full Text PDFBackground: Hyperkalemia, generally defined as serum potassium levels greater than 5.0 mEq/L, poses significant clinical risks, including cardiac toxicity and muscle weakness. Its prevalence and severity increase in patients with chronic kidney disease (CKD), diabetes mellitus, and heart failure (HF), particularly when compounded by medications like Angiotensin converting inhibitors, Angiotensin receptor blockers, and potassium sparing diuretics.
View Article and Find Full Text PDFPhysiol Res
December 2024
Department of Pathophysiology, The Second Faculty of Medicine, Charles University, Prague, Czech Republic, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
Combination of chronic kidney disease (CKD) and heart failure (HF) results in extremely high morbidity and mortality. The current guideline-directed medical therapy is rarely effective and new therapeutic approaches are urgently needed. The study was designed to examine if renal denervation (RDN) will exhibit long-standing beneficial effects on the HF- and CKD-related morbidity and mortality.
View Article and Find Full Text PDFNephrol Dial Transplant
January 2025
School of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, India.
Cardiorenal syndrome (CRS) is represented as an intricate dysfunctional interplay between the heart and kidneys, marked by cardiorenal inflammation and fibrosis. Unlike other organs, the repair process in cardiorenal injury involves a regenerative phase characterized by proliferation and polyploidization, followed by a subsequent pathogenic phase of fibrosis. In CRS, acute or chronic cardiorenal injury leads to hyperactive inflammation and fibrotic remodeling, associated with injury-mediated immune cell (Macrophages, Monocytes, and T-cells) infiltration and myofibroblast activation.
View Article and Find Full Text PDFJ Clin Med
December 2024
Medical Department, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria.
Renal disease is common in patients with cardiovascular disease (CVD) and is associated with adverse outcomes. Cardiac magnetic resonance (CMR) with advanced mapping techniques is the gold standard for characterizing myocardial tissue, and renal tissue is often visualized on these maps. However, it remains unclear whether renal T1 times accurately reflect renal dysfunction or predict adverse outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!