The role of cyclohexane diester analogues in the formation of melanin has been recently reported. In the present study, we investigated the inhibitory effect of cyclohexanediol bis-ethylhexanoate (CHEH) on melanogenesis in B16 melanoma cells and on UV-B-induced pigmentation in human skin. CHEH significantly reduced the melanin content in a dose-dependent manner, without cytotoxic effects at the effective concentrations. Moreover, CHEH dose-dependently inhibited tyrosinase activity in B16 melanoma cells, as confirmed by Western blot analysis of the tyrosinase protein levels. However, tyrosinase transcript levels remained unchanged under the same experimental conditions. These results indicate that CHEH inhibited melanogenesis in B16 melanoma cells by regulating tyrosinase activity at the post-transcriptional level. On the other hand, in a cell-free system, CHEH did not inhibit tyrosinase activity. This indicated that CHEH suppressed the pigmentation of melanocytes by indirectly regulating tyrosinase activity. Finally, in a clinical trial, a cream containing 1.0% CHEH showed good whitening effect on UV-induced pigmented human skin without adverse effects. In conclusion, we suggest that CHEH may be an effective inhibitor of melanogenesis and useful effects in the treatment of hyperpigmented disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.b12-00585 | DOI Listing |
Nat Commun
December 2024
Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers.
View Article and Find Full Text PDFNat Commun
December 2024
Division of Plastic Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
Secondary lymphedema is a common sequel of oncologic surgery and presents a global health burden still lacking pharmacological treatment. The infiltration of the lymphedematous extremities with CD4T cells influences lymphedema onset and emerges as a promising therapy target. Here, we show that the modulation of CD4FOXP3CD25regulatory T (T) cells upon anti-CTLA4 treatment protects against lymphedema development in patients with melanoma and in a mouse lymphedema model.
View Article and Find Full Text PDFFront Immunol
December 2024
Myeloid Therapeutics, Inc., Cambridge, MA, United States.
Introduction: The approval of chimeric antigen receptor (CAR) T cell therapies for the treatment of B cell malignancies has fueled the development of numerous cell therapies. However, these cell therapies are complex and costly, and unlike in hematological malignancies, outcomes with most T cell therapies in solid tumors have been disappointing. Here, we present a novel approach to directly program myeloid cells by administering novel TROP2 CAR mRNA encapsulated in lipid nanoparticles (LNPs).
View Article and Find Full Text PDFSci Rep
December 2024
Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
One important functional food ingredient today, valued for its health properties and ability to prevent disease, is bee pollen, which comprises a combination of nectar, pollen from plants, and the secretions of bees. In this research, the tyrosinase (TYR) inhibiting abilities of the peptides derived from bee pollen protein hydrolysates are investigated. Various proteases were utilized to generate these peptides, followed by testing at different concentrations.
View Article and Find Full Text PDFVet Sci
December 2024
Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, Brazil.
Canine oral melanoma (COM) is a promising target for immunomodulatory therapies aimed at enhancing the immune system's antitumor response. Given that adipose-derived mesenchymal stem cells (Ad-MSCs) possess immunomodulatory properties through cytokine release, we hypothesized that co-culturing Ad-MSCs and canine peripheral blood mononuclear cells (PBMCs) could stimulate interleukin (IL) production against melanoma cell lines (MCCLs) and help identify therapeutic targets. This study evaluated IL-2, IL-8, and IL-12 expressions in co-culture with MCCL, Ad-MSCs, and PBMCs and assessed the relationship between gene expression, cell viability, and migration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!