Stimulated Brillouin scattering (SBS) amplification is obtained in directly written As2S3 channel waveguides. Centimeter-long waveguides were written using a Ti:sapphire femtosecond laser, operating at a central wavelength of 810 nm. The cross-section of the waveguides was of 4  μm×1  μm. A Brillouin frequency shift of 7.5 GHz is observed, in general agreement with corresponding previous studies. The SBS gain spectrum in the short waveguides is comparatively broad, with a full width at half-maximum of 200 MHz. We attribute the broad linewidth to the spatial evolution of the electromagnetic field profile along the waveguide.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.37.005112DOI Listing

Publication Analysis

Top Keywords

stimulated brillouin
8
brillouin scattering
8
directly written
8
waveguides
5
scattering amplification
4
amplification centimeter-long
4
centimeter-long directly
4
written chalcogenide
4
chalcogenide waveguides
4
waveguides stimulated
4

Similar Publications

The acoustic Helmholtz equations of W-type acoustic waveguide fibers, including WI- and WII-type acoustic velocity of vl < vl < vl and vl < vl < vl, separately are solved by using the method of separation of variables, and their characteristic equations are derived according to the boundary condition and the acoustic Helmholtz equations. The distribution and cut-off of acoustic modes are analyzed by introducing acoustic normalized frequencies. The dependence of the acoustic inner core radius, the acoustic velocities in the acoustic inner and acoustic outer core on acoustic modes, and Brillouin gain spectra (BGS) is investigated.

View Article and Find Full Text PDF

The development of applications based on forward-stimulated Brillouin scattering (FSBS) in optical fibers has experienced a considerable increase in recent years, particularly in the area of fiber optic sensors. In this work, we present an experimental investigation to explore the limits of this physical mechanism in telecom optical fibers, whose results we think are of interest for the design of sensors in different areas. Specifically, we studied on the capability of the conventional probing method to detect FSBS in very short optical fibers, and the potential of FSBS to detect tiny diameter changes in the optical fiber.

View Article and Find Full Text PDF

The frequency stability of long-distance two-way fiber-optic radio frequency (RF) transfer is directly affected by the optical signal-to-noise ratio (OSNR) of optical amplifiers. In this paper, we have proposed a stimulated Brillouin scattering (SBS)-based optical amplification scheme with high OSNR for two-way fiber-optic RF frequency transfer over single mode fibers (SMF). At the remote and local site, the modulated carrier transferred from the opposite was amplified and then frequency upshifted by Brillouin frequency shift (BFS) for pump generation.

View Article and Find Full Text PDF

Brillouin microscopy enables the assessment of the mechanical properties of biological tissues by mapping the Brillouin shift in three-dimensional (3D), all-optical, label-free, non-contact, and subcellular resolution. The virtually imaged phased array (VIPA) etalon is widely utilized for measuring Brillouin spectra owing to its superior light throughput, large angular dispersion, and rapid signal acquisition capabilities. The VIPA-based spectrometer plays a significant role in Brillouin microscopy, but it is highly sensitive to factors such as the tilt angle, beam radius, lens focal length, and so on.

View Article and Find Full Text PDF

We present a scalar, time-dependent, plane-wave model for stimulated Brillouin scattering (SBS) within a fiber amplifier having a seed linewidth comparable to, or greater than, the Brillouin frequency shift. The broadband model introduces the existence of a backward anti-Stokes wave, in addition to the Stokes wave present in the narrowband model. The model also incorporates a Fresnel reflection within the fiber or at the exit face.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!