A hallmark of Alzheimer's disease (AD) is the aggressive appearance of plaques of amyloid beta (Aβ) peptides, which result from the sequential cleavage of amyloid precursor protein (APP) by the β- and γ-secretases. Aβ production is evaded by alternate cleavage of APP by the α- and γ-secretases. Carnosic acid (CA) has been proven to activate the transcription factor Nrf2, a main regulator of the antioxidant response. We investigated the effects of CA on the production of Aβ 1-42 peptide (Aβ42) and on the expressions of the related genes in SH-SY5Y human neuroblastoma cells. The treatment of cells with CA suppressed Aβ42 secretion (61% suppression at 30μM). CA treatment enhanced the mRNA expressions of an α-secretase TACE (tumor necrosis factor-α-converting enzyme, also called a disintegrin and metalloproteinase-17, ADAM17) significantly and another α-secretase ADAM10 marginally; however, the β-secretase BACE1 (β-site APP-cleaving enzyme-1) was not increased by CA. Knockdown of TACE by siRNA reduced soluble-APPα secretion enhanced by CA and partially recovered the CA-suppressed Aβ42 secretion. These results suggest that CA reduces Aβ42 production by activating TACE without promoting BACE1 in human neuroblastoma cells. The use of CA may have a potential in the prevention of Aβ-mediated diseases, particularly AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neures.2012.11.007 | DOI Listing |
Folia Morphol (Warsz)
January 2025
Department of Gynecology and Obstetrics, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
Background: Neuroblastoma often begins in infancy and one of the most common types of cancer among children is someone. Napabucasin (NP) (BBI608), a natural naphthoquinone emerging as a novel inhibitor of STAT3, has been found to effectively kill cancer stem-like tumor cells. On the other hand, the effect of Napabucasin on SH-SY5Y cells is currently unclear.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
Famotidine is an H2 receptor antagonist and is currently used on a large scale in gastroenterology. However, Famotidine may also cause severe toxicity to organ systems, including the blood system, digestive system, and urinary system. The objective of this study was to scientifically and systematically investigate the adverse events (AEs) of Famotidine in the real world through the FDA Adverse Event Reporting System (FAERS) database.
View Article and Find Full Text PDFElife
January 2025
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity.
View Article and Find Full Text PDFCrit Rev Oncog
January 2025
Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
Machine learning (ML) holds great promise in advancing risk prediction and stratification for neuroblastoma, a highly heterogeneous pediatric cancer. By utilizing large-scale biological and clinical data, ML models can detect complex patterns that traditional approaches often overlook, enabling more personalized treatments and better patient outcomes. Various ML techniques, such as support vector machines, random forests, and deep learning, have shown superior performance in predicting survival, relapse, and treatment responses in neuroblastoma patients compared to conventional methods.
View Article and Find Full Text PDFGen Physiol Biophys
January 2025
Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.
Senescence, a crucial yet paradoxical phenomenon in cellular biology, acts as a barrier against cancer progression while simultaneously promoting aging and age-related pathologies. This duality underlines the importance of precise monitoring of senescence response, especially with regard to the proposed use of drugs selectively removing senescent cells. In particular, little is known about the role of senescence in neurons and in neurodegenerative diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!