[Analysis of DNMT3a mutation in childhood acute myeloid leukemia].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

Center for Diagnosis and Therapy of Childhood Hematologic Diseaces, Blood Disease Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjing 300020, China.

Published: December 2012

Within the past few years, the invention of next-generation sequencing has revealed several new genes associated with tumor formation and development, for example DNMT3a. This gene is an independent prognostic factor for acute myeloid leukemia (AML). The objective of this study was to analyze the DNMT3a mutation in childhood AML in a single center. PCR amplification of the entire coding region of DNMT3a was performed using 23 overlapping primer pairs in 57 patients who were diagnosed in Blood Disease Hospital of Chinese Academy of Medical Sciences, then the directly sequencing was underwent. The results showed that no DNMT3a mutation was found in these patients including the hotspot R882. But AML1/ETO mutation was found in 10 patients, CBFB/MYH11 mutation in 3 patients, PML/RARa mutation in 13 patients, FLT3/ITD mutation in 5 patients, FLT3/TKD mutation in 1 patient, PML/RARa and FLT3/TKD mutation coexisted in 2 patients. It is concluded that DNMT3a mutations are rare in childhood AML, and different mechanisms of myeloid leukemogenesis between childhood and adults maybe involved.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mutation patients
20
dnmt3a mutation
12
mutation
9
mutation childhood
8
acute myeloid
8
childhood aml
8
flt3/tkd mutation
8
patients
7
dnmt3a
5
[analysis dnmt3a
4

Similar Publications

The Ataxia-telangiectasia mutated (ATM) is the most important gene for repairing the DNA in Myelodysplastic Neoplasm.

DNA Repair (Amst)

January 2025

Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil.

Myelodysplastic Neoplasm (MDS) is a cancer associated with aging, often leading to acute myeloid leukemia (AML). One of its hallmarks is hypermethylation, particularly in genes responsible for DNA repair. This study aimed to evaluate the methylation and mutation status of DNA repair genes (single-strand - XPA, XPC, XPG, CSA, CSB and double-strand - ATM, BRCA1, BRCA2, LIG4, RAD51) in MDS across three patient cohorts (Cohort A-56, Cohort B-100, Cohort C-76), using methods like pyrosequencing, real-time PCR, immunohistochemistry, and mutation screening.

View Article and Find Full Text PDF

Hepatosplenic T-cell lymphoma in children and adolescents.

Blood Adv

January 2025

Univeristy of Alabama at Birmingham, Birmingham, Alabama, United States.

Hepatosplenic T-cell lymphoma (HSTCL) is an aggressive mature T-cell lymphoma characterized by significant hepatosplenomegaly, bone marrow involvement, and minimal or no lymphadenopathy. Primarily affecting young adults, it is exceptionally rare in children and adolescents. This makes diagnosis and treatment particularly challenging for pathologists and pediatric oncologists.

View Article and Find Full Text PDF

Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain.

Proc Natl Acad Sci U S A

February 2025

Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.

Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation.

View Article and Find Full Text PDF

Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine.

Proc Natl Acad Sci U S A

February 2025

Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.

Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.

View Article and Find Full Text PDF

Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) is a neurodegenerative disease caused by mutations in the gene encoding transthyretin (TTR). Despite amyloid deposition being pathognomonic for diagnosis, this pathology in nervous tissues cannot fully account for nerve degeneration, implying additional pathophysiology for neurodegeneration, which, however, has not yet been fully elucidated. In this study, neuroinflammation in ATTRv-PN was investigated by examining nerve morphometry, the blood-nerve barrier, and macrophage infiltration in the sural nerves of ATTRv-PN patients and the sciatic nerves of a complementary mouse system, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!