Molecular nonwoven fabrics in the form of ultrathin layer-by-layer (LbL) helical polymer films with covalent cross-linking were assembled on substrates by an alternate ester-amide exchange reaction between poly(γ-methyl L-glutamate) (PMLG) and cross-linking agent ethylene diamine or 4,4'-diamino azobenzene. The regular growth of helical monolayers without excessive adsorption and the formation of amide bonds were confirmed by ultraviolet-visible (UV-vis) spectrophotometry, quartz crystal microbalance (QCM), ellipsometry, and infrared reflection-absorption spectroscopy (IR-RAS) measurements. Nanostructures with high uniformity and ultrathin films with few defects formed by helical rod segments of PMLG were characterized by atomic force microscopy (AFM) and Kelvin probe force microscopy (KFM).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la3045576 | DOI Listing |
Biomimetics (Basel)
January 2025
Research Group Architectural Engineering, Department of Architecture, KU Leuven, 3001 Leuven, Belgium.
Mycelium-based composites (MBCs) are highly valued for their ability to transform low-value organic materials into sustainable building materials, offering significant potential for decarbonizing the construction sector. The properties of MBCs are influenced by factors such as the mycelium species, substrate materials, fabrication growth parameters, and post-processing. Traditional fabrication methods involve combining grain spawn with loose substrates in a mold to achieve specific single functional properties, such as strength, acoustic absorption, or thermal insulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
COVID-19 disease, triggered by SARS-CoV-2 virus infection, has led to more than 7.0 million deaths worldwide, with a significant fraction of recovered infected people reporting postviral symptoms. Smart surfaces functionalized with nanoparticles are a powerful tool to inactivate the virus and prevent the further spreading of the disease.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Provincial Engineering Research Center for Automotive Highly Functional Fiber Products, Hefei, Anhui 230036, China. Electronic address:
Polymers (Basel)
November 2024
Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119334 Moscow, Russia.
This work is devoted to the creation of biocompatible fibrous materials with a high antimicrobial effect based on poly-3-hydroxybutyrate (PHB) and chlorophyll (Chl). The data obtained show the possibility of obtaining fibrous materials from PHB and Chl by electrospinning methods. The obtained electrospun matrices were investigated by the SEM, DSC and FTIR methods.
View Article and Find Full Text PDFACS Appl Bio Mater
November 2024
Department of Chemistry, University of Saskatchewan, 110 Science Place, Thorvaldson Building, Saskatoon, Saskatchewan S7N 5C9, Canada.
Herein, nonwoven alkali modified flax substrates were coated with incremental levels of chitosan, followed by immobilization of tannic acid, via a facile "dip-coating" strategy to yield a unique hierarchal "triplex" hybrid biomaterial, denoted as "THB". The characterization of the physicochemical properties of THB employed complementary spectroscopic (IR, Raman, and NMR) techniques, which support the role of hydrogen bonding and electrostatic interactions between the components: chitosan as the secondary biopolymer coating and the tertiary adsorbed polyphenols. XRD and SEM techniques provide further structural insight that confirms the unique semicrystalline nature and porous hierarchal structure of the biocomposite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!