Label-free imaging of blood vessel morphology with capillary resolution using optical microangiography.

Quant Imaging Med Surg

University of Washington, Department of Bioengineering, Seattle, Washington 98195, USA.

Published: September 2012

Several tissue pathologies are correlated with changes in the blood vessel morphology and microcirculation that supplies the tissue. Optical coherence tomography (OCT) is an imaging technique that enables acquiring non-invasive three-dimensional images of biological structures with micrometer resolution. Optical microangiography (OMAG) is a method of processing OCT data which enables visualizing the three-dimensional blood vessel morphology within biological tissues. OMAG has high spatial resolution which allows visualizing single capillary vessels, and does not require the use of contrast agents. The intrinsic optical signals backscattered by the moving blood cells inside blood vessels are used as the contrast for which OMAG images are based on. In this paper, we discuss a brief review of the OMAG theory, and present some examples of applications for this technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496511PMC
http://dx.doi.org/10.3978/j.issn.2223-4292.2012.08.01DOI Listing

Publication Analysis

Top Keywords

blood vessel
12
vessel morphology
12
resolution optical
8
optical microangiography
8
blood
5
label-free imaging
4
imaging blood
4
morphology capillary
4
capillary resolution
4
optical
4

Similar Publications

Background: The triglyceride‒glucose index (TyG index) is a reliable surrogate for insulin resistance (IR) in individuals with type 2 diabetes mellitus and is associated with cardiovascular disease. Recent studies have reported that H-type hypertension is likewise a predictor of adverse events in patients with coronary heart disease (CHD). However, the relationship between the TyG index and prognosis in patients with H-type hypertension combined with CHD has not yet been reported.

View Article and Find Full Text PDF

Hsa_circ_0001304 promotes vascular neointimal hyperplasia accompanied by autophagy activation.

Commun Biol

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.

Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms.

View Article and Find Full Text PDF

The inflammatory response of lung tissue and abnormal proliferation of pulmonary artery smooth muscle cells are involved in the pathogenesis of high-altitude pulmonary hypertension (HAPH). Halofuginone (HF), an active ingredient derivative of Chang Shan (Dichroa febrifuga Lour. [Hydrangeaceae]), has antiproliferative, antihypertrophic, antifibrotic, and other effects, but its protective effects on HAPH remains unclear.

View Article and Find Full Text PDF

Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.

View Article and Find Full Text PDF

Purpose: The underlying mechanism why segmentectomy has demonstrated the non-inferiority to lobectomy in several randomized trials remains unclear. Computed tomography (CT)-measured pulmonary artery (PA) enlargement reflects PA pressure and predicts the prognosis of certain respiratory diseases. We compared the preoperative and postoperative PA diameter to the ascending aorta diameter (PA/A) ratio, investigating its impact on right ventricular function in lung resection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!