Small noncoding HIV-1 leader exon 3 is defined by its splice sites A2 and D3. While 3' splice site (3'ss) A2 needs to be activated for vpr mRNA formation, the location of the vpr start codon within downstream intron 3 requires silencing of splicing at 5'ss D3. Here we show that the inclusion of both HIV-1 exon 3 and vpr mRNA processing is promoted by an exonic splicing enhancer (ESE(vpr)) localized between exonic splicing silencer ESSV and 5'ss D3. The ESE(vpr) sequence was found to be bound by members of the Transformer 2 (Tra2) protein family. Coexpression of these proteins in provirus-transfected cells led to an increase in the levels of exon 3 inclusion, confirming that they act through ESE(vpr). Further analyses revealed that ESE(vpr) supports the binding of U1 snRNA at 5'ss D3, allowing bridging interactions across the upstream exon with 3'ss A2. In line with this, an increase or decrease in the complementarity of 5'ss D3 to the 5' end of U1 snRNA was accompanied by a higher or lower vpr expression level. Activation of 3'ss A2 through the proposed bridging interactions, however, was not dependent on the splicing competence of 5'ss D3 because rendering it splicing defective but still competent for efficient U1 snRNA binding maintained the enhancing function of D3. Therefore, we propose that splicing at 3'ss A2 occurs temporally between the binding of U1 snRNA and splicing at D3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571381 | PMC |
http://dx.doi.org/10.1128/JVI.02756-12 | DOI Listing |
ACS Synth Biol
December 2024
Telethon Institute of Genetics and Medicine, 80078 Naples, Italy.
We introduce a biomolecular circuit for precise control of gene expression in mammalian cells. The circuit leverages the stochiometric interaction between the artificial transcription factor VPR-dCas9 and the anti-CRISPR protein AcrIIA4, enhanced with synthetic coiled-coil domains to boost their interaction, to maintain the expression of a reporter protein constant across diverse experimental conditions, including fluctuations in protein degradation rates and plasmid concentrations, by automatically adjusting its mRNA level. This capability, known as robust perfect adaptation (RPA), is crucial for the stable functioning of biological systems and has wide-ranging implications for biotechnological applications.
View Article and Find Full Text PDFCell Mol Life Sci
September 2024
Department of Biomedical Engineering, City University of Hong Kong, P6414, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China.
Extension of the replicative lifespan of primary cells can be achieved by activating human telomerase reverse transcriptase (hTERT) to maintain sufficient telomere lengths. In this work, we utilize CRISPR/dCas9-based epigenetic modifiers (p300 histone acetyltransferase and TET1 DNA demethylase) and transcriptional activators (VPH and VPR) to reactivate the endogenous TERT gene in unstimulated T cells in the peripheral blood mononuclear cells (PBMCs) by rewiring the epigenetic marks of the TERT promoter. Importantly, we have successfully expanded resting T cells and delayed their cellular senescence for at least three months through TERT reactivation, without affecting the expression of a T-cell marker (CD3) or inducing an accelerated cell division rate.
View Article and Find Full Text PDFAm J Hum Genet
February 2024
Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark. Electronic address:
Genetic variants that affect mRNA splicing are a major cause of hereditary disorders, but the spliceogenicity of variants is challenging to predict. RNA diagnostics of clinically accessible tissues enable rapid functional characterization of splice-altering variants within their natural genetic context. However, this analysis cannot be offered to all individuals as one in five human disease genes are not expressed in easily accessible cell types.
View Article and Find Full Text PDFmBio
December 2023
Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
Intracellular innate immunity involves co-evolved antiviral restriction factors that specifically inhibit infecting viruses. Studying these restrictions has increased our understanding of viral replication, host-pathogen interactions, and pathogenesis, and represent potential targets for novel antiviral therapies. Lentiviral restriction 2 (Lv2) was identified as an unmapped early-phase restriction of HIV-2 and later shown to also restrict HIV-1 and simian immunodeficiency virus.
View Article and Find Full Text PDFViruses
July 2023
Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
A common feature of the mammalian (family ) is an RNA genome that contains an extremely high frequency of adenine (31.7-38.2%) while being extremely poor in cytosine (13.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!