After the contagion measles virus (MV) crosses the respiratory epithelium within myeloid cells that express the primary receptor signaling lymphocytic activation molecule (SLAM), it replicates briskly in SLAM-expressing cells in lymphatic organs. Later, the infection spreads to epithelia expressing nectin-4, an adherens junction protein expressed preferentially in the trachea, but how it gets there is not understood. To characterize the mechanisms of spread, we infected groups of 5 or 6 cynomolgus monkeys (Macaca fascicularis) with either a wild-type MV or its "N4-blind" derivative, which is unable to enter nectin-4-expressing cells because of the targeted mutation of two hemagglutinin residues. As expected, both viruses caused similar levels of immunosuppression, as monitored by reductions in white blood cell counts and lymphocyte proliferation activity. However, monkeys infected with the N4-blind MV cleared infection more rapidly. Wild-type virus-infected monkeys secreted virus, while marginal virus titers were detected in tracheal lavage fluid cells of N4-blind MV-infected hosts. Analyses of tracheal rings obtained at necropsy (day 12) documented widespread infection of individual cells or small cell clusters in the subepithelial lamina propria of monkeys infected with either virus. However, only wild-type MV spread to the epithelium, forming numerous infectious centers comprised of many contiguous columnar cells. Infected CD11c(+) myeloid (macrophage or dendritic) cells were frequently observed in the lamina propria below epithelial infectious centers. Thus, MV may use myeloid cells as vehicles not only immediately after contagion but also to infect epithelia of tissues expressing nectin-4, including the trachea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571369PMC
http://dx.doi.org/10.1128/JVI.03037-12DOI Listing

Publication Analysis

Top Keywords

lamina propria
12
cells
9
measles virus
8
myeloid cells
8
expressing nectin-4
8
monkeys infected
8
infectious centers
8
virus
5
infected
5
nectin-4-dependent measles
4

Similar Publications

Lymphoma is the most common neoplasia in the intestine of cats. According to ACVIM consensus statement, low-grade intestinal T-cell lymphoma (LGITCL) represents a monomorphic infiltration of the lamina propria or epithelium or both of cats with small, mature, neoplastic (clonal) T lymphocytes. Despite the importance as contributing factors of inheritance and environment in the pathogenesis of LGITCL, the chronic inflammatory status plays a fundamental role.

View Article and Find Full Text PDF

Tracheal mucosal keratosis: Case discussion and literature review.

Chron Respir Dis

January 2025

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

A 57-year-old female presented with a chief complaint of cough, with productive yellow sputum particularly severe in the morning. Bronchoscopy revealed inflammatory changes in both main bronchi, with abundant white purulent secretions and necrotic material adhering to the luminal surface. Histopathological examination showed chronic inflammatory changes in the mucosal tissue, with mild hyperplasia of the local squamous epithelium and evidence of keratinization in the surrounding area, consistent with a diagnosis of tracheal mucosal keratosis.

View Article and Find Full Text PDF

Establishment of nasal and olfactory epithelium organoids for unveiling mechanism of tissue regeneration and pathogenesis of nasal diseases.

Cell Mol Life Sci

January 2025

ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.

Organoid is an ideal in vitro model with cellular heterogeneity and genetic stability when passaging. Currently, organoids are exploited as new tools in a variety of preclinical researches and applications for disease modeling, drug screening, host-microbial interactions, and regenerative therapy. Advances have been made in the establishment of nasal and olfactory epithelium organoids that are used to investigate the pathogenesis of smell-related diseases and cellular/molecular mechanism underlying the regeneration of olfactory epithelium.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

STEM Neurology & Neuropsychological0 Research Group Egypt (SNRGE), Port Said, Port Said, Egypt.

Background: The olfactory mucosa cells are capable of lifelong neurogenesis providing a viable source of progenitor cells. Olfactory mucosa progenitor cells (OMPCs) have alleviated several cerebral ischemia/reperfusion damage markers. OMPCs are safely obtainable from the upper nasal cavity.

View Article and Find Full Text PDF

Background: Longitudinal population-based studies have consistently revealed an expedited cognitive decline in the elderly population with type 2 diabetes mellitus (DM2). Additionally, there is a documented increased risk of developing vascular dementia and Alzheimer's disease in individuals with DM2. Conversely, recent research has pointed to metformin (MET), a widely prescribed medication for type 2 diabetes mellitus (T2DM), potentially mitigating age-related cognitive dysfunction (Madhu et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!