Capillary electromigration techniques have developed into significant analytical separation tools especially for enantioseparations. While CE can be considered a mature technique as documented by its wide applications, CEC is still in a developmental state despite many research efforts. The success of stereospecific CE separation methods is due to the high specificity and flexibility of the technique as well as the availability of many types of chiral selectors. Thus, numerous methods have been developed for the analysis of chiral compounds in chemical, biochemical, pharmaceutical, environmental, and forensic sciences. However, most reported applications deal with pharmaceuticals. The search for new chiral selectors also continued despite the fact that most applications were performed using cyclodextrins. Furthermore, CE has been combined with spectroscopic and molecular modeling studies in attempts to understand the interactions between chiral selectors and analytes. The present review focuses on recent examples of mechanistic aspects of capillary enantioseparations with regard to mathematical modeling of enantioseparations, investigations of the analyte-complex structures as well as new chiral selectors and applications of chiral analyses by CE and CEC. It covers the literature published between January 2011 and August 2012.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.201200836 | DOI Listing |
Electrophoresis
January 2025
Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
Computer simulation was utilized to characterize the electrophoretic processes occurring during the enantioselective capillary electrophoresis-mass spectrometry (CE-MS) analysis of ketamine, norketamine, and hydroxynorketamine in a system with partial filling of the capillary with 19 mM (equals 5%) of highly sulfated γ-cyclodextrin (HS-γ-CD) and analyte detection on the cathodic side. Provided that the sample is applied without or with a small amount of the chiral selector, analytes become quickly focused and separated in the thereby formed HS-γ-CD gradient at the cathodic end of the sample compartment. This gradient broadens with time, remains stationary, and gradually reduces its span from the lower side due to diffusion such that analytes with high affinity to the anionic selector become released onto the other side of the focusing gradient where anionic migration and defocusing occur concomitantly.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, 0179, Tbilisi, Georgia. Electronic address:
Background: Isotopologues resulting from the labelling of molecules with deuterium have attracted interest due to the isotope effect observed in chemistry and biosciences. Isotope effect may also play out in noncovalent interactions and mechanisms leading to intermolecular recognition. In chromatography, differences in retention time between isotopologues, as well as between isotopomers have been observed resulting in two different elution sequences (isotope effects): the normal isotope effect when heavier isotopologues retain longer than lighter analogues, and the inverse isotope effect featuring the opposite elution order.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608 Taiwan.
Despite having identical physicochemical properties, chiral molecules require effective separation techniques due to their distinct pharmacological effects. Polysaccharide-based chiral stationary phases (CSPs) are widely used for chiral separations in liquid chromatography; however, the mechanisms of chiral recognition are not well understood. This research explored the adsorption, retention, and chiral recognition mechanisms of three amylose-based CSPs: Chiralpak ID, IF, and IG.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India.
Enantioseparation and enantiorecognition are crucial in the pharmaceutical analysis of chiral substances, impacting safety, efficacy, and regulatory compliance. Enantioseparation refers to the process of separating enantiomers from a mixture, typically achieved through chromatography techniques like HPLC and SFC. In contrast, enantiorecognition involves the identification of enantiomers based on their interaction with a chiral selector without the need for separation.
View Article and Find Full Text PDFJ Sep Sci
December 2024
College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, China.
Chiral macrocycles have emerged as attractive media for chromatographic enantioseparation due to their excellent host-guest recognition properties. In this study, a new chiral stationary phase (CSP) based on 1,1'-binaphthyl chiral polyimine macrocycle (CPM) was reported. The CPM was synthesized by one-step aldehyde-amine condensation of (S)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarboxaldehyde with 1,2-phenylenediamine and bonded on thiolated silica via the thiol-ene click reaction to afford the CSP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!