Characterization of monoclonal antibody size variants containing extra light chains.

MAbs

Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA, USA.

Published: July 2013

Size exclusion chromatography (SEC) is the most commonly used method to separate and quantify monoclonal antibody (mAb) size variants. MAb-A is an IgG1 subtype humanized monoclonal antibody recombinantly produced in Chinese hamster ovary (CHO) cells. SEC analysis of MAb-A resolved a peak, named Peak 1, which elutes between monomer and dimer peaks. MAb-A lots produced from different clones and production scales all have 0.2-0.3% of SEC Peak 1. Electron spray ionization--time of flight mass spectrometry (ESI-TOF MS), microfluidics capillary electrophoresis and sodium dodecyl sulfate-PAGE (SDS PAGE) results demonstrated that SEC Peak 1 contains two structural variants: MAb-A with one extra light chain (2H3L) and MAb-A with two extra light chains (2H4L). The C-terminal Cys of the extra light chain in Peak 1 variants is either a free thiol, capped by glutathione, cysteine, or another light chain. Both electrophoresis and LC/MS analyses of non-reduced and reduced samples suggested that the extra light chains are linked to the MAb-A light chain through disulfide bonds. Isolated SEC Peak 1 fraction had a potency of 50% relative to MAb-A reference material. The 50% potency loss may result from the reduced accessibility to the antigen-binding site caused by the extra light chain(s)' steric hindrance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564875PMC
http://dx.doi.org/10.4161/mabs.22965DOI Listing

Publication Analysis

Top Keywords

extra light
24
light chain
16
monoclonal antibody
12
light chains
12
size variants
8
light
8
variants mab-a
8
mab-a extra
8
mab-a
7
extra
6

Similar Publications

On-Chip Elastic Wave Manipulations Based on Synthetic Dimension.

Phys Rev Lett

December 2024

Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.

Manipulating elastic waves in lower-dimensional mechanical metamaterials has attracted much attention since it lays the foundation for the design of various elastic functional devices, especially for on-chip size. However, due to the experimental challenges, it is very difficult to control elastic waves in higher dimensions. In this Letter, we introduce an extra structural parameter to synthesize and investigate the on-chip Weyl physics in silicon-on-insulator system.

View Article and Find Full Text PDF

An Automated Workflow to Discover the Structure-Stability Relations for Radiation Hard Molecular Semiconductors.

J Am Chem Soc

January 2025

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.

Emerging photovoltaics for outer space applications are one of the many examples where radiation hard molecular semiconductors are essential. However, due to a lack of general design principles, their resilience against extra-terrestrial high-energy radiation can currently not be predicted. In this work, the discovery of radiation hard materials is accelerated by combining the strengths of high-throughput, lab automation and machine learning.

View Article and Find Full Text PDF

Many strokes from a single non-stenosing plaque: from the last event a light to the first one?

Neurol Sci

January 2025

Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Via Amendola 2, Reggio Emilia, 42122, Italy.

Introduction: Large artery atherosclerosis is a relevant cause of ischemic stroke. Beyond carotid artery stenosis ≥ 50%, causative in etiological classification of stroke, non-stenosing plaques are an increasingly reported cause of stroke with embolic pattern.

Methods: We are presenting the case of a 56 years old woman presenting with a first symptomatic multifocal ischemic stroke in the right internal carotid artery (ICA) territory on 2018 and a finding of asymptomatic past vascular injury in the same vascular territory on neuroimaging studies.

View Article and Find Full Text PDF

High-Definition, Video-Rate Triple-Channel NIR-II Imaging Using Shadowless Lamp Excitation and Illumination.

ACS Nano

January 2025

State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China.

Multichannel imaging in the second near-infrared (NIR-II) window offers vital and comprehensive information for complex surgical environments, yet a simple, high-quality, video-rate multichannel imaging method with low safety risk remains to be proposed. Centered at the superior NIR-IIx window of 1400-1500 nm, triple-channel imaging coordinated with 1000-1100 and 1700-1880 nm (NIR-IIc) achieves exceptional clarity and an impressive signal-to-crosstalk ratio as high as 22.10.

View Article and Find Full Text PDF
Article Synopsis
  • Chemiluminescence (CL) is a chemical reaction that produces light without needing external energy sources, offering advantages in sensitivity and imaging.
  • Researchers developed a series of unimolecular probes that emit light in the near-infrared (NIR-II) range for better imaging, specifically targeting wavelengths up to 1060 nm.
  • The study successfully demonstrated these probes for real-time detection of superoxide anions in a mouse model of liver injury, highlighting their potential for advanced bioimaging and disease diagnosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!