Amyotrophic lateral sclerosis (ALS) is a lethal disease characterized by the unremitting degeneration of motor neurons. Multiple processes involving motor neurons and other cell types have been implicated in its pathogenesis. Neural stem cells (NSCs) perform multiple actions within the nervous system to fulfill their functions of organogenesis and homeostasis. We test the hypothesis that transplanted, undifferentiated multipotent migratory NSCs may help to ameliorate an array of pathological mechanisms in the SOD1(G93A) transgenic mouse model of ALS. On the basis of a meta-analysis of 11 independent studies performed by a consortium of ALS investigators, we propose that transplanted NSCs (both mouse and human) can slow both the onset and the progression of clinical signs and prolong survival in ALS mice, particularly if regions sustaining vital functions such as respiration are rendered chimeric. The beneficial effects of transplanted NSCs seem to be mediated by a number of actions including their ability to produce trophic factors, preserve neuromuscular function, and reduce astrogliosis and inflammation. We conclude that the widespread, pleiotropic, modulatory actions exerted by transplanted NSCs may represent an accessible therapeutic application of stem cells for treating ALS and other untreatable degenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.3004579DOI Listing

Publication Analysis

Top Keywords

stem cells
12
transplanted nscs
12
neural stem
8
mouse model
8
model als
8
motor neurons
8
als
6
nscs
5
multimodal actions
4
actions neural
4

Similar Publications

Erythropoiesis, a remarkably dynamic and efficient process responsible for generating the daily quota of red blood cells (approximately 280 ± 20 billion cells per day), is crucial for maintaining individual health. Any disruption in this pathway can have significant consequences, leading to health issues. According to the World Health Organization, an estimated 25% of the global population presents symptoms of anemia.

View Article and Find Full Text PDF

Isolation of Human BAMBIhighMFGE8high Umbilical Cord-Derived Mesenchymal Stromal Cells.

J Vis Exp

January 2025

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University;

Umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) present low immunogenicity and potent immunomodulatory effects for treating various diseases. Human UC-MSCs are a heterogeneous population consisting of three main subpopulations with different cell shapes, proliferation rates, differentiation abilities, and immune regulatory functions. Previously, BAMBIMFGE8 UC-MSCs, the first subgroup successfully isolated from UC-MSCs were found to fail to alleviate lupus nephritis.

View Article and Find Full Text PDF

Microglia-mediated neuroinflammation plays a crucial role in Alzheimer's disease (AD). Tinosinenside A (Tis A) is a novel sesquiterpene glycoside isolated from the dried rattan stem of Tinospora sinensis (Lour.) Merr.

View Article and Find Full Text PDF

Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.

View Article and Find Full Text PDF

Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!