It is known that the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are effective in both the primary and the secondary prevention of ischemic heart disease. Increasing evidence indicates that statins have protective effects in several neurological diseases including stroke, cerebral ischemia, Parkinson disease, multiple sclerosis, traumatic brain injury and epilepsy. The aim of the present research was to evaluate the effects of some HMG-CoA reductase inhibitors (i.e. lovastatin, simvastatin, atorvastatin, fluvastatin and pravastatin) commonly used for the treatment of hypercholesterolemia in the DBA/2 mice, an animal model of generalized tonic-clonic seizures. Furthermore, the co-administration of these compounds with some antiepileptic drugs (AEDs; i.e. carbamazepine, diazepam, felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, topiramate and valproate) was studied in order to identify possible positive pharmacological interactions. Simvastatin only was active against both the tonic and clonic phase of audiogenic seizures, whereas the other statins tested were only partially effective against the tonic phase with the following order of potency: lovastatin>fluvastatin>atorvastatin; pravastatin was completely ineffective up to the dose of 150mg/kg. The co-administration of ineffective doses of all statins with AEDs generally increased the potency of the latter reducing their ED50 values. In particular, simvastatin was the most active in potentiating the activity of AEDs and the combinations of statins with carbamazepine, diazepam, felbamate, lamotrigine, topiramate and valproate were the most favorable, whereas, the co-administrations with the other AEDs studied was in most cases neutral. The increase in potency was generally associated with an enhancement of motor impairment (TD50); however, the therapeutic index (TD50/ED50) of combined treatment of AEDs with statins was predominantly more favorable than control. Statins administration did not significantly affect the total plasma but, in some cases, it increased the free plasma levels and the brain concentrations of some of the AEDs studied (i.e. carbamazepine, diazepam, phenytoin and valproate); however, these alterations where not statistically significant. Therefore, with the exception of the latter compounds, we might exclude pharmacokinetic interactions and conclude that for the most of AEDs, potentiation was of pharmacodynamic nature. In conclusion, simvastatin, fluvastatin, lovastatin and atorvastatin showed an additive anticonvulsant effect when co-administered with some AEDs, most notably carbamazepine, diazepam, felbamate, lamotrigine, topiramate and valproate, implicating a possible therapeutic relevance of such drug combinations. The present results suggest that statins, besides the beneficial cardiovascular effects, might be able to affect brain areas, which might participate in the regulation of seizure susceptibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2012.12.002 | DOI Listing |
Seizure
January 2025
Department of Pharmacy Practice, Auburn University Harrison College of Pharmacy, Auburn, AL 36049, United States.
Purpose: On November 28, 2023, the U.S. FDA issued a Drug Safety Communication, warning that antiseizure medications (ASMs) levetiracetam and clobazam can cause a rare but serious reaction, drug reaction with eosinophilia and systemic symptoms (DRESS).
View Article and Find Full Text PDFDrugs Real World Outcomes
January 2025
Kabul University of Medical Sciences, Kabul, Afghanistan.
Anti-seizure medications (ASMs) are specific types of anticonvulsants used to treat epileptic seizures. However, several studies have shown an association between ASMs and an increased risk of hematological disorders, such as thrombocytopenia, aplastic anemia, and platelet function disorders leading to prolonged bleeding times. This review explores the existing literature on this topic, investigating a wide variety of ASMs, ranging from first-generation medications to newer ones.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Graduate Program in Pharmaceutical Sciences, Evangelical University of Goiás, Anapolis 75083-515, GO, Brazil.
This work provides insight into carbamazepine polymorphs (Forms I, II, III, IV, and V), with reports on the cytoprotective, exploratory, motor, CNS-depressant, and anticonvulsant properties of carbamazepine (CBZ), carbamazepine formulation (CBZ-F), topiramate (TOP), oxcarbazepine (OXC), and diazepam (DZP) in mice. Structural analysis highlighted the significant difference in molecular conformations, which directly influence the physicochemical properties; and density functional theory description provided indications about CBZ reactivity and stability. In addition to neuron viability assessment in vitro, animals were treated orally with vehicle 10 mL/kg, as well as CBZ, CBZ-F, TOP, OXC, and DZP at the dose of 5 mg/kg and exposed to open-field, rotarod, barbiturate sleep induction and pentylenetetrazol (PTZ 70 mg/kg)-induced seizure.
View Article and Find Full Text PDFToxics
June 2024
IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!